Suppr超能文献

嗜冷孢子形成菌生长特性研究及其在乳制品腐败预测模型中的应用。

Psychrotolerant spore-former growth characterization for the development of a dairy spoilage predictive model.

机构信息

Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853.

Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853.

出版信息

J Dairy Sci. 2018 Aug;101(8):6964-6981. doi: 10.3168/jds.2018-14501. Epub 2018 May 24.

Abstract

Psychrotolerant spore-forming bacteria represent a major challenge regarding microbial spoilage of fluid milk. These organisms can survive most conventional pasteurization regimens and subsequently germinate and grow to spoilage levels during refrigerated storage. To improve predictions of fluid milk shelf life and assess different approaches to control psychrotolerant spore-forming bacteria in the fluid milk production and processing continuum, we developed a predictive model of spoilage of fluid milk due to germination and growth of psychrotolerant spore-forming bacteria. We characterized 14 psychrotolerant spore-formers, representing the most common Bacillales subtypes isolated from raw and pasteurized milk, for ability to germinate from spores and grow in skim milk broth at 6°C. Complete growth curves were obtained by determining total bacterial count and spore count every 24 h for 30 d. Based on growth curves at 6°C, probability distributions of initial spore counts in bulk tank raw milk, and subtype frequency in bulk tank raw milk, a Monte Carlo simulation model was created to predict spoilage patterns in high temperature, short time-pasteurized fluid milk. Monte Carlo simulations predicted that 66% of half-gallons (1,900 mL) of high temperature, short time fluid milk would reach a cell density greater than 20,000 cfu/mL after 21 d of storage at 6°C, consistent with current spoilage patterns observed in commercial products. Our model also predicted that an intervention that reduces initial spore loads by 2.2 Log most probable number/mL (e.g., microfiltration) can extend fluid milk shelf life by 4 d (end of shelf life was defined here as the first day when the mean total bacterial count exceeded 20,000 cfu/mL). This study not only provides a baseline understanding of the growth rates of psychrotolerant spore-formers in fluid milk, it also provides a stochastic model of spoilage by these organisms over the shelf life of fluid milk, which will ultimately allow for the assessment of different approaches to reduce fluid milk spoilage.

摘要

耐冷孢子形成细菌是液态奶微生物变质的主要挑战。这些生物能够在大多数常规巴氏杀菌方案中存活下来,然后在冷藏储存过程中发芽并生长到变质水平。为了提高对液态奶保质期的预测,并评估在液态奶生产和加工连续体中控制耐冷孢子形成细菌的不同方法,我们开发了一种预测由于耐冷孢子形成细菌的发芽和生长导致液态奶变质的模型。我们对 14 种耐冷孢子形成细菌进行了表征,这些细菌代表了从生奶和巴氏杀菌奶中分离出的最常见的芽孢杆菌亚类,以确定它们从孢子中发芽和在 6°C 的脱脂乳肉汤中生长的能力。通过每 24 小时确定总细菌计数和孢子计数,获得了完整的生长曲线,持续 30 天。基于 6°C 下的生长曲线、散装罐生奶中初始孢子计数的概率分布以及散装罐生奶中的亚类频率,创建了一个蒙特卡罗模拟模型,以预测高温短时间巴氏杀菌液态奶的变质模式。蒙特卡罗模拟预测,在 6°C 下储存 21 天后,66%的半加仑(1900 毫升)高温短时间液态奶的细胞密度将超过 20,000 cfu/mL,这与商业产品中观察到的当前变质模式一致。我们的模型还预测,通过减少初始孢子负荷 2.2 Log 最可能数/mL(例如,微滤)的干预措施可以将液态奶的保质期延长 4 天(保质期结束定义为第一天总细菌计数超过 20,000 cfu/mL)。这项研究不仅提供了对耐冷孢子形成细菌在液态奶中生长速度的基本了解,还提供了这些生物体在液态奶保质期内变质的随机模型,这最终将允许评估减少液态奶变质的不同方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验