Suppr超能文献

鉴定肠道神经系统中的节律性放电模式,该模式产生平滑肌的节律性电活动。

Identification of a Rhythmic Firing Pattern in the Enteric Nervous System That Generates Rhythmic Electrical Activity in Smooth Muscle.

机构信息

College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide 5042, Australia,

College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide 5042, Australia.

出版信息

J Neurosci. 2018 Jun 13;38(24):5507-5522. doi: 10.1523/JNEUROSCI.3489-17.2018. Epub 2018 May 28.

Abstract

The enteric nervous system (ENS) contains millions of neurons essential for organization of motor behavior of the intestine. It is well established that the large intestine requires ENS activity to drive propulsive motor behaviors. However, the firing pattern of the ENS underlying propagating neurogenic contractions of the large intestine remains unknown. To identify this, we used high-resolution neuronal imaging with electrophysiology from neighboring smooth muscle. Myoelectric activity underlying propagating neurogenic contractions along murine large intestine [also referred to as colonic migrating motor complexes, (CMMCs)] consisted of prolonged bursts of rhythmic depolarizations at a frequency of ∼2 Hz. Temporal coordination of this activity in the smooth muscle over large spatial fields (∼7 mm, longitudinally) was dependent on the ENS. During quiescent periods between neurogenic contractions, recordings from large populations of enteric neurons, in mice of either sex, revealed ongoing activity. The onset of neurogenic contractions was characterized by the emergence of temporally synchronized activity across large populations of excitatory and inhibitory neurons. This neuronal firing pattern was rhythmic and temporally synchronized across large numbers of ganglia at ∼2 Hz. ENS activation preceded smooth muscle depolarization, indicating rhythmic depolarizations in smooth muscle were controlled by firing of enteric neurons. The cyclical emergence of temporally coordinated firing of large populations of enteric neurons represents a unique neural motor pattern outside the CNS. This is the first direct observation of rhythmic firing in the ENS underlying rhythmic electrical depolarizations in smooth muscle. The pattern of neuronal activity we identified underlies the generation of CMMCs. How the enteric nervous system (ENS) generates neurogenic contractions of smooth muscle in the gastrointestinal (GI) tract has been a long-standing mystery in vertebrates. It is well known that myogenic pacemaker cells exist in the GI tract [called interstitial cells of Cajal (ICCs)] that generate rhythmic myogenic contractions. However, the mechanisms underlying the generation of rhythmic neurogenic contractions of smooth muscle in the GI tract remains unknown. We developed a high-resolution neuronal imaging method with electrophysiology to address this issue. This technique revealed a novel pattern of rhythmic coordinated neuronal firing in the ENS that has never been identified. Rhythmic neuronal firing in the ENS was found to generate rhythmic neurogenic depolarizations in smooth muscle that underlie contraction of the GI tract.

摘要

肠神经系统 (ENS) 包含数以百万计的神经元,这些神经元对于肠道运动行为的组织至关重要。众所周知,大肠需要 ENS 活动来驱动推进性运动行为。然而,大肠中传播性神经源性收缩的 ENS 放电模式尚不清楚。为了确定这一点,我们使用高分辨率神经元成像和邻近平滑肌的电生理学方法。在 [也称为结肠移行性运动复合波 (CMMC)] 的小鼠大肠中,传播性神经源性收缩的基础是肌电活动,其特征是节律性去极化的延长爆发,频率约为 2 Hz。这种平滑肌中活动的时间协调在较大的空间区域 (约 7 毫米,纵向) 上依赖于 ENS。在神经源性收缩之间的静息期间,从雌雄小鼠的大量肠神经元中记录到的活动显示出持续的活动。神经源性收缩的开始表现为大量兴奋性和抑制性神经元中出现时间同步的活动。这种神经元放电模式在约 2 Hz 的大量神经节中是节律性的并且时间上同步的。ENS 激活先于平滑肌去极化,表明平滑肌中的节律性去极化是由肠神经元的放电控制的。大量肠神经元的时间协调放电的周期性出现代表了 CNS 外的一种独特的神经运动模式。这是首次直接观察到 ENS 中节律性放电在平滑肌中的节律性电去极化。我们所确定的神经元活动模式是 CMMC 的基础。ENS 如何在胃肠道 (GI) 中产生平滑肌的神经源性收缩一直是脊椎动物中的一个长期谜团。众所周知,胃肠道中存在肌源性起搏细胞 [称为 Cajal 间质细胞 (ICC)],它们产生节律性肌源性收缩。然而,GI 中平滑肌的节律性神经源性收缩的产生机制尚不清楚。我们开发了一种带有电生理学的高分辨率神经元成像方法来解决这个问题。该技术揭示了 ENS 中一种从未被识别过的新型节律性协调神经元放电模式。ENS 中的节律性神经元放电被发现可以产生平滑肌中的节律性神经源性去极化,从而导致 GI 收缩。

相似文献

1
Identification of a Rhythmic Firing Pattern in the Enteric Nervous System That Generates Rhythmic Electrical Activity in Smooth Muscle.
J Neurosci. 2018 Jun 13;38(24):5507-5522. doi: 10.1523/JNEUROSCI.3489-17.2018. Epub 2018 May 28.
2
Rhythmicity in the Enteric Nervous System of Mice.
Adv Exp Med Biol. 2022;1383:295-306. doi: 10.1007/978-3-031-05843-1_27.
3
Activity within specific enteric neurochemical subtypes is correlated with distinct patterns of gastrointestinal motility in the murine colon.
Am J Physiol Gastrointest Liver Physiol. 2019 Aug 1;317(2):G210-G221. doi: 10.1152/ajpgi.00252.2018. Epub 2019 Jul 3.
4
Diversity of neurogenic smooth muscle electrical rhythmicity in mouse proximal colon.
Am J Physiol Gastrointest Liver Physiol. 2020 Feb 1;318(2):G244-G253. doi: 10.1152/ajpgi.00317.2019. Epub 2019 Dec 2.
5
Embryogenesis of the peristaltic reflex.
J Physiol. 2019 May;597(10):2785-2801. doi: 10.1113/JP277746. Epub 2019 Apr 21.
6
A Novel Mode of Sympathetic Reflex Activation Mediated by the Enteric Nervous System.
eNeuro. 2020 Aug 10;7(4). doi: 10.1523/ENEURO.0187-20.2020. Print 2020 Jul/Aug.
7
Roles of three distinct neurogenic motor patterns during pellet propulsion in guinea-pig distal colon.
J Physiol. 2019 Oct;597(20):5125-5140. doi: 10.1113/JP278284. Epub 2019 Oct 1.
9
Neurogenic and myogenic patterns of electrical activity in isolated intact mouse colon.
Neurogastroenterol Motil. 2017 Oct;29(10):1-12. doi: 10.1111/nmo.13089. Epub 2017 Apr 18.
10
Control of colonic motility using electrical stimulation to modulate enteric neural activity.
Am J Physiol Gastrointest Liver Physiol. 2021 Apr 1;320(4):G675-G687. doi: 10.1152/ajpgi.00463.2020. Epub 2021 Feb 24.

引用本文的文献

1
mutation manifests in abnormal gastrointestinal morphology and function in mice.
Front Neurosci. 2025 Apr 17;19:1552369. doi: 10.3389/fnins.2025.1552369. eCollection 2025.
2
Unique properties of proximal and distal colon reflect distinct motor functions.
Am J Physiol Gastrointest Liver Physiol. 2025 Apr 1;328(4):G448-G454. doi: 10.1152/ajpgi.00215.2024. Epub 2025 Mar 17.
3
Enteric Neuronal Substrates Underlying Spontaneous and Evoked Neurogenic Contractions in Mouse Colon.
Cell Mol Gastroenterol Hepatol. 2025;19(5):101462. doi: 10.1016/j.jcmgh.2025.101462. Epub 2025 Jan 13.
5
Characterization of viscerofugal neurons in human colon by retrograde tracing and multi-layer immunohistochemistry.
Front Neurosci. 2024 Jan 16;17:1313057. doi: 10.3389/fnins.2023.1313057. eCollection 2023.
7
Loss of ASD-related molecule Cntnap2 affects colonic motility in mice.
Front Neurosci. 2023 Nov 9;17:1287057. doi: 10.3389/fnins.2023.1287057. eCollection 2023.
9
Calcium image analysis in the moving gut.
Neurogastroenterol Motil. 2023 Dec;35(12):e14678. doi: 10.1111/nmo.14678. Epub 2023 Sep 22.
10
Ca dynamics in interstitial cells: foundational mechanisms for the motor patterns in the gastrointestinal tract.
Physiol Rev. 2024 Jan 1;104(1):329-398. doi: 10.1152/physrev.00036.2022. Epub 2023 Aug 10.

本文引用的文献

1
Stan: A Probabilistic Programming Language.
J Stat Softw. 2017;76. doi: 10.18637/jss.v076.i01. Epub 2017 Jan 11.
2
Optogenetic Induction of Colonic Motility in Mice.
Gastroenterology. 2018 Aug;155(2):514-528.e6. doi: 10.1053/j.gastro.2018.05.029. Epub 2018 May 18.
3
The first brain: Species comparisons and evolutionary implications for the enteric and central nervous systems.
Neurogastroenterol Motil. 2018 Feb;30(2). doi: 10.1111/nmo.13234. Epub 2017 Oct 11.
4
Synaptic activation of putative sensory neurons by hexamethonium-sensitive nerve pathways in mouse colon.
Am J Physiol Gastrointest Liver Physiol. 2018 Jan 1;314(1):G53-G64. doi: 10.1152/ajpgi.00234.2017. Epub 2017 Sep 21.
5
Neurogenic and myogenic patterns of electrical activity in isolated intact mouse colon.
Neurogastroenterol Motil. 2017 Oct;29(10):1-12. doi: 10.1111/nmo.13089. Epub 2017 Apr 18.
7
Imaging activation of peptidergic spinal afferent varicosities within visceral organs using novel CGRPα-mCherry reporter mice.
Am J Physiol Gastrointest Liver Physiol. 2016 Nov 1;311(5):G880-G894. doi: 10.1152/ajpgi.00250.2016. Epub 2016 Sep 22.
8
Enteric Neurobiology: Discoveries and Directions.
Adv Exp Med Biol. 2016;891:175-91. doi: 10.1007/978-3-319-27592-5_17.
10
Insights into the mechanisms underlying colonic motor patterns.
J Physiol. 2016 Aug 1;594(15):4099-116. doi: 10.1113/JP271919. Epub 2016 Jun 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验