College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, Australia.
Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St Louis, Missouri.
Gastroenterology. 2018 Aug;155(2):514-528.e6. doi: 10.1053/j.gastro.2018.05.029. Epub 2018 May 18.
BACKGROUND & AIMS: Strategies are needed to increase gastrointestinal transit without systemic pharmacologic agents. We investigated whether optogenetics, focal application of light to control enteric nervous system excitability, could be used to evoke propagating contractions and increase colonic transit in mice.
We generated transgenic mice with Cre-mediated expression of light-sensitive channelrhodopsin-2 (ChR2) in calretinin neurons (CAL-ChR2 Cre+ mice); Cre- littermates served as controls. Colonic myenteric neurons were analyzed by immunohistochemistry, patch-clamp, and calcium imaging studies. Motility was assessed by mechanical, electrophysiological, and video recording in vitro and by fecal output in vivo.
In isolated colons, focal light stimulation of calretinin enteric neurons evoked classic polarized motor reflexes (50/58 stimulations), followed by premature anterograde propagating contractions (39/58 stimulations). Light stimulation could evoke motility from sites along the entire colon. These effects were prevented by neural blockade with tetrodotoxin (n = 2), and did not occur in control mice (n = 5). Light stimulation of proximal colon increased the proportion of natural fecal pellets expelled over 15 minutes in vitro (75% ± 17% vs 32% ± 8% for controls) (P < .05). In vivo, activation of wireless light-emitting diodes implanted onto the colon wall significantly increased hourly fecal pellet output in conscious, freely moving mice (4.2 ± 0.4 vs 1.3 ± 0.3 in controls) (P < .001).
In studies of mice, we found that focal activation of a subset of enteric neurons can increase motility of the entire colon in vitro, and fecal output in vivo. Optogenetic control of enteric neurons might therefore be used to modify gut motility.
需要寻找策略来增加胃肠道传输,而无需全身使用药物。我们研究了光遗传学是否可以用来引发传播性收缩并增加小鼠的结肠传输,该方法通过聚焦于光来控制肠神经系统的兴奋性。
我们生成了一种转基因小鼠,其中钙视网膜蛋白神经元中的 Cre 介导的光敏感通道视蛋白 2(ChR2)表达(CAL-ChR2 Cre+ 小鼠);Cre 同窝仔鼠作为对照。通过免疫组织化学、膜片钳和钙成像研究分析结肠肌间神经元。通过体外机械、电生理和视频记录以及体内粪便排泄来评估运动。
在分离的结肠中,对钙视网膜蛋白神经元的焦点光刺激引发了经典的极化运动反射(58 次刺激中的 50 次),随后是过早的顺行传播性收缩(58 次刺激中的 39 次)。光刺激可以从整个结肠的各个部位引发运动。这些作用可被神经阻滞(n=2)所阻断,而在对照小鼠(n=5)中则不会发生。近端结肠的光刺激增加了体外 15 分钟内自然粪便颗粒排出的比例(75%±17%比对照的 32%±8%)(P<0.05)。在体内,植入到结肠壁的无线发光二极管的激活显著增加了清醒、自由活动小鼠每小时的粪便颗粒排出量(4.2±0.4比对照的 1.3±0.3)(P<0.001)。
在对小鼠的研究中,我们发现,聚焦激活一组肠神经元可以增加体外整个结肠的运动性,并增加体内粪便的排出量。肠神经元的光遗传学控制因此可能用于改变肠道运动。