Wang Zhenggong, Isfahani Ali Pournaghshband, Wakimoto Kazuki, Shrestha Binod Babu, Yamaguchi Daisuke, Ghalei Behnam, Sivaniah Easan
Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, 606-8501, Kyoto, Japan.
Graduate School of Energy Science, Kyoto University, Kyoto, 606-8501, Japan.
ChemSusChem. 2018 Aug 22;11(16):2744-2751. doi: 10.1002/cssc.201801002. Epub 2018 Jul 10.
Polyimide-based materials provide attractive chemistries for the development of gas-separation membranes. Modification of inter- and intra-chain interactions is a route to improve the separation performance. In this work, copolyimides with Tröger's base (TB) monomers are designed and synthesized. In particular, a series of copolyimides is synthesized with different contents of carboxylic acid groups (0-50 wt %) to alter the inter- and intra-chain interactions and enhance the basicity of the TB-polyimides. A detailed thermal and structural analysis is provided for the new copolyimides. Gas permeation data reveal a tunable trend in separation performance with increasing carboxylic acid group content. Importantly, this is one of the few examples of copolyimide membranes materials that show enhanced plasticization resistance to high-pressure gas feeds through physical cross-linking.
聚酰亚胺基材料为气体分离膜的开发提供了有吸引力的化学性质。改变链间和链内相互作用是提高分离性能的一条途径。在这项工作中,设计并合成了含有特罗格碱(TB)单体的共聚酰亚胺。特别地,合成了一系列具有不同羧酸基团含量(0 - 50 wt%)的共聚酰亚胺,以改变链间和链内相互作用,并增强TB - 聚酰亚胺的碱性。对新型共聚酰亚胺进行了详细的热分析和结构分析。气体渗透数据显示,随着羧酸基团含量的增加,分离性能呈现出可调节的趋势。重要的是,这是少数几个通过物理交联对高压气体进料表现出增强抗塑化性能的共聚酰亚胺膜材料的例子之一。