Lu Yunhua, Zhang Jianhua, Xiao Guoyong, Li Lin, Hou Mengjie, Hu Junyi, Wang Tonghua
School of Chemical Engineering, University of Science and Technology Liaoning Anshan Liaoning 114051 P. R. China
School of Chemical Engineering, Dalian University of Technology Dalian Liaoning 116024 P. R. China
RSC Adv. 2020 May 5;10(30):17461-17472. doi: 10.1039/d0ra00145g.
The diamine monomer, 9,9-bis[4-(4-amino-3-hydroxylphenoxy)phenyl] fluorene (bis-AHPPF) was successfully synthesized according to our modified method. A series of hydroxyl-containing poly(ether-imide)s (HPEIs) were prepared by polycondensation of the bis-AHPPF diamine with six kinds of dianhydrides, including 1,2,3,4-cyclobutanetetracarboxylic dianhydride (CBDA), pyromellitic dianhydride (PMDA), 3,3',4,4'-biphenyl tetracarboxylic diandhydride (BPDA), 3,3',4,4'-oxydiphthalic anhydride (ODPA), 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) and 4,4'-(hexafluoroisopropylidine)diphtalic anhydride (6FDA) followed by thermal imidization. The corresponding thermally rearranged (TR) membranes were obtained by solid state thermal treatment at high temperature under a nitrogen atmosphere. The chemical structure, and physical, thermal and mechanical properties of the HPEI precursors were characterized. The effects of heat treatment temperature and dianhydrides on the gas transport properties of the poly(ether-benzoxazole) (PEBO) membranes were also investigated. It was found that these HPEIs showed excellent thermal and mechanical properties. All the HPEI precursors underwent thermal conversion in a N atmosphere with low rearrangement temperatures. The gas permeabilities of the PEBO membranes increased with the increase of thermal treatment temperature. When HPEI-6FDA was treated at 450 °C for 1 h, the H, CO, O and N permeabilities of the membrane reached 239.6, 196.04, 46.41 and 9.25 Barrers coupled with a O/N selectivity of 5.02 and a CO/N selectivity of 21.19. In six TR-PEBOs, PEBO-6FDA exhibited the lowest rearrangement temperature and largest gas permeabilities. Therefore, thermally rearranged membranes from bis-AHPPF-based HPEIs are expected to be promising materials for gas separation.
按照我们改进的方法成功合成了二胺单体9,9-双[4-(4-氨基-3-羟基苯氧基)苯基]芴(双-AHPPF)。通过双-AHPPF二胺与六种二酐(包括1,2,3,4-环丁烷四羧酸二酐(CBDA)、均苯四甲酸二酐(PMDA)、3,3',4,4'-联苯四羧酸二酐(BPDA)、3,3',4,4'-氧二邻苯二甲酸酐(ODPA)、3,3',4,4'-二苯甲酮四羧酸二酐(BTDA)和4,4'-(六氟异亚丙基)二邻苯二甲酸酐(6FDA))进行缩聚反应,随后热亚胺化,制备了一系列含羟基的聚(醚-酰亚胺)(HPEI)。通过在氮气气氛下高温固态热处理获得了相应的热重排(TR)膜。对HPEI前体的化学结构以及物理、热学和力学性能进行了表征。还研究了热处理温度和二酐对聚(醚-苯并恶唑)(PEBO)膜气体传输性能的影响。发现这些HPEI表现出优异的热学和力学性能。所有HPEI前体在N气氛中均能在较低的重排温度下进行热转化。PEBO膜的气体渗透率随热处理温度的升高而增加。当HPEI-6FDA在450℃下处理1小时时,膜的H、CO、O和N渗透率分别达到239.6、196.04、46.41和9.25巴耳,同时O/N选择性为5.02,CO/N选择性为21.19。在六种TR-PEBO中,PEBO-6FDA表现出最低的重排温度和最大的气体渗透率。因此,基于双-AHPPF的HPEI的热重排膜有望成为有前景的气体分离材料。