Harnadek G J, Callahan R E, Barone A R, Njus D
Biochemistry. 1985 Jan 15;24(2):384-9. doi: 10.1021/bi00323a022.
Adrenal medullary chromaffin-vesicle membranes contain a transmembrane electron carrier that may provide reducing equivalents for intravesicular dopamine beta-hydroxylase in vivo. This electron transfer system can generate a membrane potential (inside positive) across resealed chromaffin-vesicle membranes (ghosts) by passing electrons from an internal electron donor to an external electron acceptor. Both ascorbic acid and isoascorbic acid are suitable electron donors. As an electron acceptor, ferricyanide elicits a transient increase in membrane potential at physiological temperatures. A stable membrane potential can be produced by coupling the chromaffin-vesicle electron-transfer system to cytochrome oxidase by using cytochrome c. The membrane potential is generated by transferring electrons from the internal electron donor to cytochrome c. Cytochrome c is then reoxidized by cytochrome oxidase. In this coupled system, the rate of electron transfer can be measured as the rate of oxygen consumption. The chromaffin-vesicle electron-transfer system reduces cytochrome c relatively slowly, but the rate is greatly accelerated by low concentrations of ferrocyanide. Accordingly, stable electron transfer dependent membrane potentials require cytochrome c, oxygen, and ferrocyanide. They are abolished by the cytochrome oxidase inhibitor cyanide. This membrane potential drives reserpine-sensitive norepinephrine transport, confirming the location of the electron-transfer system in the chromaffin-vesicle membrane. This also demonstrates the potential usefulness of the electron transfer driven membrane potential for studying energy-linked processes in this membrane.
肾上腺髓质嗜铬囊泡膜含有一种跨膜电子载体,在体内可能为囊泡内的多巴胺β-羟化酶提供还原当量。这个电子传递系统可以通过将电子从内部电子供体传递到外部电子受体,在重新封闭的嗜铬囊泡膜(空泡)上产生膜电位(内部为正)。抗坏血酸和异抗坏血酸都是合适的电子供体。作为电子受体,铁氰化物在生理温度下会引起膜电位的短暂增加。通过使用细胞色素c将嗜铬囊泡电子传递系统与细胞色素氧化酶偶联,可以产生稳定的膜电位。膜电位是通过将电子从内部电子供体传递到细胞色素c而产生的。然后细胞色素c被细胞色素氧化酶重新氧化。在这个偶联系统中,电子传递速率可以作为耗氧速率来测量。嗜铬囊泡电子传递系统还原细胞色素c相对较慢,但低浓度的亚铁氰化物能大大加速其速率。因此,稳定的依赖电子传递的膜电位需要细胞色素c、氧气和亚铁氰化物。它们会被细胞色素氧化酶抑制剂氰化物消除。这种膜电位驱动利血平敏感的去甲肾上腺素转运,证实了电子传递系统在嗜铬囊泡膜中的位置。这也证明了电子传递驱动的膜电位在研究该膜中能量相关过程方面的潜在用途。