Suppr超能文献

在大肠杆菌 tpiA 缺失菌株中,糖酵解与毒性甲基乙二醛产生的偶联需要同步和违反直觉的遗传变化来适应。

Adaptation to the coupling of glycolysis to toxic methylglyoxal production in tpiA deletion strains of Escherichia coli requires synchronized and counterintuitive genetic changes.

机构信息

Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark.

Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA.

出版信息

Metab Eng. 2018 Jul;48:82-93. doi: 10.1016/j.ymben.2018.05.012. Epub 2018 May 26.

Abstract

Methylglyoxal is a highly toxic metabolite that can be produced in all living organisms. Methylglyoxal was artificially elevated by removal of the tpiA gene from a growth optimized Escherichia coli strain. The initial response to elevated methylglyoxal and its toxicity was characterized, and detoxification mechanisms were studied using adaptive laboratory evolution. We found that: 1) Multi-omics analysis revealed biological consequences of methylglyoxal toxicity, which included attack on macromolecules including DNA and RNA and perturbation of nucleotide levels; 2) Counter-intuitive cross-talk between carbon starvation and inorganic phosphate signalling was revealed in the tpiA deletion strain that required mutations in inorganic phosphate signalling mechanisms to alleviate; and 3) The split flux through lower glycolysis depleted glycolytic intermediates requiring a host of synchronized and coordinated mutations in non-intuitive network locations in order to re-adjust the metabolic flux map to achieve optimal growth. Such mutations included a systematic inactivation of the Phosphotransferase System (PTS) and alterations in cell wall biosynthesis enzyme activity. This study demonstrated that deletion of major metabolic genes followed by ALE was a productive approach to gain novel insight into the systems biology underlying optimal phenotypic states.

摘要

甲基乙二醛是一种毒性很强的代谢物,所有生物体都能产生。通过从生长优化的大肠杆菌菌株中去除 tpiA 基因,人为地提高了甲基乙二醛的含量。本研究对升高的甲基乙二醛及其毒性的初始反应进行了特征描述,并利用适应性实验室进化研究了解毒机制。我们发现:1)多组学分析揭示了甲基乙二醛毒性的生物学后果,包括对包括 DNA 和 RNA 在内的大分子的攻击以及核苷酸水平的紊乱;2)在 tpiA 缺失菌株中揭示了碳饥饿和无机磷酸盐信号之间的反直觉交叉对话,需要突变无机磷酸盐信号机制来缓解;3)通过低糖酵解的分流耗尽了糖酵解中间产物,需要在非直觉的网络位置进行一系列同步和协调的突变,以重新调整代谢通量图以实现最佳生长。这些突变包括磷酸转移酶系统(PTS)的系统失活和细胞壁生物合成酶活性的改变。这项研究表明,删除主要代谢基因,然后进行 ALE,是一种很有成效的方法,可以深入了解最佳表型状态下的系统生物学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验