Habibpour Mahdis, Razaghi-Moghadam Zahra, Nikoloski Zoran
Bioinformatics Department, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
NAR Genom Bioinform. 2024 Sep 3;6(3):lqae114. doi: 10.1093/nargab/lqae114. eCollection 2024 Sep.
Unraveling metabolite-protein interactions is key to identifying the mechanisms by which metabolism affects the function of other cellular layers. Despite extensive experimental and computational efforts to identify the regulatory roles of metabolites in interaction with proteins, it remains challenging to achieve a genome-scale coverage of these interactions. Here, we leverage established gold standards for metabolite-protein interactions to train supervised classifiers using features derived from genome-scale metabolic models and matched data on protein abundance and reaction fluxes to distinguish interacting from non-interacting pairs. Through a comprehensive comparative study, we explore the impact of different features and assess the effect of gold standards for non-interacting pairs on the performance of the classifiers. Using data sets from and , we demonstrate that the features constructed by integrating fluxomic and proteomic data with metabolic phenotypes predicted from genome-scale metabolic models can be effectively used to train classifiers, accurately predicting metabolite-protein interactions in the context of metabolism. Our results reveal that the high performance of classifiers trained on these features is unaffected by the method used to generate gold standards for non-interacting pairs. Overall, our study introduces valuable features that improve the performance of identifying metabolite-protein interactions in the context of metabolism.
解析代谢物与蛋白质之间的相互作用是确定代谢影响其他细胞层面功能机制的关键。尽管在识别代谢物与蛋白质相互作用中的调节作用方面进行了大量实验和计算工作,但要实现这些相互作用的全基因组规模覆盖仍然具有挑战性。在此,我们利用已确立的代谢物与蛋白质相互作用的金标准,使用从全基因组规模代谢模型衍生的特征以及蛋白质丰度和反应通量的匹配数据来训练监督分类器,以区分相互作用对和非相互作用对。通过全面的比较研究,我们探讨了不同特征的影响,并评估了非相互作用对的金标准对分类器性能的影响。使用来自[具体来源1]和[具体来源2]的数据集,我们证明,通过将通量组学和蛋白质组学数据与从全基因组规模代谢模型预测的代谢表型相结合构建的特征,可有效地用于训练分类器,在代谢背景下准确预测代谢物与蛋白质的相互作用。我们的结果表明,基于这些特征训练的分类器的高性能不受用于生成非相互作用对金标准的方法的影响。总体而言,我们的研究引入了有价值的特征,提高了在代谢背景下识别代谢物与蛋白质相互作用的性能。