Suppr超能文献

多个人工最优表型克服了大肠杆菌 pgi 敲除进化中氧化还原和糖酵解中间代谢物的失衡。

Multiple Optimal Phenotypes Overcome Redox and Glycolytic Intermediate Metabolite Imbalances in Escherichia coli pgi Knockout Evolutions.

机构信息

Department of Bioengineering, University of California, San Diego, La Jolla, California, USA.

Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.

出版信息

Appl Environ Microbiol. 2018 Sep 17;84(19). doi: 10.1128/AEM.00823-18. Print 2018 Oct 1.

Abstract

A mechanistic understanding of how new phenotypes develop to overcome the loss of a gene product provides valuable insight on both the metabolic and regulatory functions of the lost gene. The gene, whose product catalyzes the second step in glycolysis, was deleted in a growth-optimized K-12 MG1655 strain. The initial knockout (KO) strain exhibited an 80% drop in growth rate that was largely recovered in eight replicate, but phenotypically distinct, cultures after undergoing adaptive laboratory evolution (ALE). Multi-omic data sets showed that the loss of substantially shifted pathway usage, leading to a redox and sugar phosphate stress response. These stress responses were overcome by unique combinations of innovative mutations selected for by ALE. Thus, the coordinated mechanisms from genome to metabolome that lead to multiple optimal phenotypes after the loss of a major gene product were revealed. A mechanistic understanding of how microbes are able to overcome the loss of a gene through regulatory and metabolic changes is not well understood. Eight independent adaptive laboratory evolution (ALE) experiments with knockout strains resulted in eight phenotypically distinct endpoints that were able to overcome the gene loss. Utilizing multi-omics analysis, the coordinated mechanisms from genome to metabolome that lead to multiple optimal phenotypes after the loss of a major gene product were revealed.

摘要

对新表型如何发展以克服基因产物缺失的机制理解,为丢失基因的代谢和调节功能提供了有价值的见解。该基因的产物催化糖酵解的第二步,在生长优化的 K-12 MG1655 菌株中被删除。最初的敲除(KO)菌株的生长速度下降了 80%,但经过适应性实验室进化(ALE)后,在 8 个重复但表型不同的培养物中得到了很大的恢复。多组学数据集显示,的缺失极大地改变了途径的使用,导致氧化还原和糖磷酸应激反应。这些应激反应被 ALE 选择的独特创新突变所克服。因此,揭示了在失去主要基因产物后,从基因组到代谢组导致多种最佳表型的协调机制。微生物如何通过调节和代谢变化来克服基因缺失的机制理解还不太清楚。对 敲除菌株进行了 8 次独立的适应性实验室进化(ALE)实验,得到了 8 个表型不同的终点,这些终点能够克服基因缺失。利用多组学分析,揭示了在失去主要基因产物后,从基因组到代谢组导致多种最佳表型的协调机制。

相似文献

2
NADPH-dependent pgi-gene knockout Escherichia coli metabolism producing shikimate on different carbon sources.
FEMS Microbiol Lett. 2011 Nov;324(1):10-6. doi: 10.1111/j.1574-6968.2011.02378.x. Epub 2011 Sep 6.
3
Dissecting the genetic and metabolic mechanisms of adaptation to the knockout of a major metabolic enzyme in .
Proc Natl Acad Sci U S A. 2018 Jan 2;115(1):222-227. doi: 10.1073/pnas.1716056115. Epub 2017 Dec 18.
4
7
Genetic basis of growth adaptation of Escherichia coli after deletion of pgi, a major metabolic gene.
PLoS Genet. 2010 Nov 4;6(11):e1001186. doi: 10.1371/journal.pgen.1001186.
8
Data-Driven Strain Design Using Aggregated Adaptive Laboratory Evolution Mutational Data.
ACS Synth Biol. 2021 Dec 17;10(12):3379-3395. doi: 10.1021/acssynbio.1c00337. Epub 2021 Nov 11.

引用本文的文献

1
Sugar phosphate-mediated inhibition of peptidoglycan precursor synthesis.
mBio. 2025 Aug 13;16(8):e0172925. doi: 10.1128/mbio.01729-25. Epub 2025 Jul 28.
3
Multidimensional Engineering of Escherichia coli for Efficient Adipic Acid Synthesis From Cyclohexane.
Adv Sci (Weinh). 2025 Apr;12(14):e2411938. doi: 10.1002/advs.202411938. Epub 2025 Feb 17.
4
Sugar phosphate-mediated inhibition of peptidoglycan precursor synthesis.
bioRxiv. 2024 Nov 14:2024.11.13.623475. doi: 10.1101/2024.11.13.623475.
5
Progressive transcriptomic shifts in evolved yeast strains following gene knockout.
iScience. 2024 Oct 21;27(11):111219. doi: 10.1016/j.isci.2024.111219. eCollection 2024 Nov 15.
6
Machine learning of metabolite-protein interactions from model-derived metabolic phenotypes.
NAR Genom Bioinform. 2024 Sep 3;6(3):lqae114. doi: 10.1093/nargab/lqae114. eCollection 2024 Sep.
7
Maximizing multi-reaction dependencies provides more accurate and precise predictions of intracellular fluxes than the principle of parsimony.
PLoS Comput Biol. 2023 Sep 18;19(9):e1011489. doi: 10.1371/journal.pcbi.1011489. eCollection 2023 Sep.
8
Experimental evolution for cell biology.
Trends Cell Biol. 2023 Nov;33(11):903-912. doi: 10.1016/j.tcb.2023.04.006. Epub 2023 May 13.
9
Predictive evolution of metabolic phenotypes using model-designed environments.
Mol Syst Biol. 2022 Oct;18(10):e10980. doi: 10.15252/msb.202210980.
10
Phosphoglucose Isomerase Plays a Key Role in Sugar Homeostasis, Stress Response, and Pathogenicity in .
Front Cell Infect Microbiol. 2021 Dec 15;11:777266. doi: 10.3389/fcimb.2021.777266. eCollection 2021.

本文引用的文献

1
Sensing Mechanisms in the Redox-Regulated, [2Fe-2S] Cluster-Containing, Bacterial Transcriptional Factor SoxR.
Acc Chem Res. 2017 Jul 18;50(7):1672-1678. doi: 10.1021/acs.accounts.7b00137. Epub 2017 Jun 21.
2
Tempo and mode of genome evolution in a 50,000-generation experiment.
Nature. 2016 Aug 11;536(7615):165-70. doi: 10.1038/nature18959. Epub 2016 Aug 1.
3
Modeling Method for Increased Precision and Scope of Directly Measurable Fluxes at a Genome-Scale.
Anal Chem. 2016 Apr 5;88(7):3844-52. doi: 10.1021/acs.analchem.5b04914. Epub 2016 Mar 24.
5
RegulonDB version 9.0: high-level integration of gene regulation, coexpression, motif clustering and beyond.
Nucleic Acids Res. 2016 Jan 4;44(D1):D133-43. doi: 10.1093/nar/gkv1156. Epub 2015 Nov 2.
7
Diverse mechanisms of post-transcriptional repression by the small RNA regulator of glucose-phosphate stress.
Mol Microbiol. 2016 Jan;99(2):254-73. doi: 10.1111/mmi.13230. Epub 2015 Oct 26.
8
The architecture of ArgR-DNA complexes at the genome-scale in Escherichia coli.
Nucleic Acids Res. 2015 Mar 31;43(6):3079-88. doi: 10.1093/nar/gkv150. Epub 2015 Mar 3.
9
Transhydrogenase promotes the robustness and evolvability of E. coli deficient in NADPH production.
PLoS Genet. 2015 Feb 25;11(2):e1005007. doi: 10.1371/journal.pgen.1005007. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验