Suppr超能文献

培育具有改良营养品质且表达[具体内容缺失]的无标记转基因水稻(L.)

Production of Marker-free Transgenic Rice ( L.) with Improved Nutritive Quality Expressing .

作者信息

Xu Ming, Zhao Shuai, Zhang Yuwen, Yin Hengjie, Peng Xuejuan, Cheng Zuxin, Yang Zhijian, Zheng Jingui

机构信息

Crop Quality Institute, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China.

出版信息

Iran J Biotechnol. 2017 Aug 19;15(2):102-110. doi: 10.15171/ijb.1527. eCollection 2017.

Abstract

Rice seed proteins are lacking essential amino acids (EAAs). Genetic engineering offers a fast and sustainable method to solve this problem as it allows the specific expression of heterologous EAA-rich proteins. The use of selectable marker gene is essential for generation of transgenic crops, but might also lead to potential environmental and food safety problems. Therefore, the production of marker-free transgenic crops is becoming an extremely attractive alternative and could contribute to the public acceptance of transgenic crops. The present study was conducted to examine whether can be expressed specifically in rice seeds, and generate marker-free transgenic rice with improved nutritive value. was transferred into rice using -mediated co-transformation system with a twin T-DNA binary vector and its integration in rice genome was confirmed by southern blot. Transcription of was analyzed by Real-Time PCR and its expression was verified by western analysis. Protein and amino acid content were measured by the Kjeldahl method and the high-speed amino acid analyzer, respectively. Five selectable marker-free homozygous transgenic lines were obtained from the progeny. The expression of recombinant was confirmed by the observation of a 35 kDa band in SDS-PAGE and western blot. Compared to the wild-type control, the total protein contents in the seeds of five homozygous lines were increased by 1.06~12.87%. In addition, the content of several EAAs, including lysine, threonine, and valine was increased significantly in the best expressing line. The results indicated that the amino acid composition of rice grain could be improved by seed-specific expression of .

摘要

水稻种子蛋白缺乏必需氨基酸(EAA)。基因工程提供了一种快速且可持续的方法来解决这一问题,因为它允许特异性表达富含异源必需氨基酸的蛋白质。选择标记基因的使用对于转基因作物的产生至关重要,但也可能导致潜在的环境和食品安全问题。因此,生产无标记转基因作物正成为一种极具吸引力的选择,并且有助于公众接受转基因作物。本研究旨在检测[具体蛋白名称]是否能在水稻种子中特异性表达,并培育出具有改善营养价值的无标记转基因水稻。通过带有双T-DNA双元载体的[具体介导方式]介导共转化系统将[具体蛋白名称]转入水稻,并通过Southern杂交确认其在水稻基因组中的整合。通过实时定量PCR分析[具体蛋白名称]的转录情况,并通过Western分析验证其表达。分别采用凯氏定氮法和高速氨基酸分析仪测定蛋白质和氨基酸含量。从后代中获得了5个无选择标记的纯合转基因株系。通过SDS-PAGE和Western杂交中观察到35 kDa条带,证实了重组[具体蛋白名称]的表达。与野生型对照相比,5个纯合株系种子中的总蛋白含量提高了1.06%至12.87%。此外,在表达最佳的株系中,包括赖氨酸、苏氨酸和缬氨酸在内的几种必需氨基酸的含量显著增加。结果表明,通过[具体蛋白名称]在种子中的特异性表达可以改善水稻籽粒的氨基酸组成。

相似文献

1
Production of Marker-free Transgenic Rice ( L.) with Improved Nutritive Quality Expressing .
Iran J Biotechnol. 2017 Aug 19;15(2):102-110. doi: 10.15171/ijb.1527. eCollection 2017.
6
Molecular characterization of marker-free transgenic lines of indica rice that accumulate carotenoids in seed endosperm.
Mol Genet Genomics. 2005 Nov;274(4):325-36. doi: 10.1007/s00438-005-0030-7. Epub 2005 Sep 23.

引用本文的文献

1
Genetically Modified Rice Is Associated with Hunger, Health, and Climate Resilience.
Foods. 2023 Jul 21;12(14):2776. doi: 10.3390/foods12142776.
2
A Prospective Review on Selectable Marker-Free Genome Engineered Rice: Past, Present and Future Scientific Realm.
Front Genet. 2022 Jun 9;13:882836. doi: 10.3389/fgene.2022.882836. eCollection 2022.
3
Applications of Genomic Tools in Plant Breeding: Crop Biofortification.
Int J Mol Sci. 2022 Mar 13;23(6):3086. doi: 10.3390/ijms23063086.
4
Biofortification of Cereals and Pulses Using New Breeding Techniques: Current and Future Perspectives.
Front Nutr. 2021 Oct 7;8:721728. doi: 10.3389/fnut.2021.721728. eCollection 2021.
5
Genetic Manipulation for Improved Nutritional Quality in Rice.
Front Genet. 2020 Jul 24;11:776. doi: 10.3389/fgene.2020.00776. eCollection 2020.

本文引用的文献

1
Progress and challenges in improving the nutritional quality of rice (Oryza sativa L.).
Crit Rev Food Sci Nutr. 2017 Jul 24;57(11):2455-2481. doi: 10.1080/10408398.2015.1084992.
3
Using metabolomic approaches to explore chemical diversity in rice.
Mol Plant. 2015 Jan;8(1):58-67. doi: 10.1016/j.molp.2014.11.010. Epub 2014 Dec 11.
4
Biofortification of rice with lysine using endogenous histones.
Plant Mol Biol. 2015 Feb;87(3):235-48. doi: 10.1007/s11103-014-0272-z. Epub 2014 Dec 17.
6
Transgenic rice as bioreactor for production of the Candida antarctica lipase B.
Plant Biotechnol J. 2014 Sep;12(7):963-70. doi: 10.1111/pbi.12204. Epub 2014 May 23.
7
Large-scale production and evaluation of marker-free rice IR64 expressing phytoferritin genes.
Mol Breed. 2014;33(1):23-37. doi: 10.1007/s11032-013-9931-z. Epub 2013 Aug 11.
8
Production of marker-free and RSV-resistant transgenic rice using a twin T-DNA system and RNAi.
J Biosci. 2013 Sep;38(3):573-81. doi: 10.1007/s12038-013-9349-0.
9
Less is more: strategies to remove marker genes from transgenic plants.
BMC Biotechnol. 2013 Apr 23;13:36. doi: 10.1186/1472-6750-13-36.
10
The role of QTLs in the breeding of high-yielding rice.
Trends Plant Sci. 2011 Jun;16(6):319-26. doi: 10.1016/j.tplants.2011.02.009. Epub 2011 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验