Suppr超能文献

多孔膜在组织屏障和共培养模型中的应用。

Use of porous membranes in tissue barrier and co-culture models.

机构信息

Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, USA.

出版信息

Lab Chip. 2018 Jun 12;18(12):1671-1689. doi: 10.1039/c7lc01248a.

Abstract

Porous membranes enable the partitioning of cellular microenvironments in vitro, while still allowing physical and biochemical crosstalk between cells, a feature that is often necessary for recapitulating physiological functions. This article provides an overview of the different membranes used in tissue barrier and cellular co-culture models with a focus on experimental design and control of these systems. Specifically, we discuss how the structural, mechanical, chemical, and even the optical and transport properties of different membranes bestow specific advantages and disadvantages through the context of physiological relevance. This review also explores how membrane pore properties affect perfusion and solute permeability by developing an analytical framework to guide the design and use of tissue barrier or co-culture models. Ultimately, this review offers insight into the important aspects one must consider when using porous membranes in tissue barrier and lab-on-a-chip applications.

摘要

多孔膜能够在体外分隔细胞微环境,同时仍允许细胞间的物理和生化串扰,这是再现生理功能的常用手段。本文概述了组织屏障和细胞共培养模型中使用的不同膜,重点介绍了这些系统的实验设计和控制。具体来说,我们讨论了不同膜的结构、力学、化学,甚至光学和传输特性如何通过与生理相关性的结合,赋予特定的优缺点。本文还通过开发分析框架来探讨膜孔特性如何通过影响灌注和溶质渗透性,从而指导组织屏障或共培养模型的设计和使用。最终,本文深入探讨了在组织屏障和芯片实验室应用中使用多孔膜时必须考虑的重要方面。

相似文献

1
Use of porous membranes in tissue barrier and co-culture models.
Lab Chip. 2018 Jun 12;18(12):1671-1689. doi: 10.1039/c7lc01248a.
2
Tunable Microstructured Membranes in Organs-on-Chips to Monitor Transendothelial Hydraulic Resistance.
Tissue Eng Part A. 2019 Dec;25(23-24):1635-1645. doi: 10.1089/ten.TEA.2019.0021. Epub 2019 Sep 3.
3
Large-Scale Fabrication of Freestanding Polymer Ultrathin Porous Membranes for Transparent Transwell Coculture Systems.
ACS Nano. 2024 Mar 19;18(11):8168-8179. doi: 10.1021/acsnano.3c11946. Epub 2024 Mar 4.
4
Porous nanocrystalline silicon membranes as highly permeable and molecularly thin substrates for cell culture.
Biomaterials. 2010 Jul;31(20):5408-17. doi: 10.1016/j.biomaterials.2010.03.041. Epub 2010 Apr 15.
5
Ultrathin transparent membranes for cellular barrier and co-culture models.
Biofabrication. 2017 Feb 14;9(1):015019. doi: 10.1088/1758-5090/aa5ba7.
7
Advances in cell coculture membranes recapitulating in vivo microenvironments.
Trends Biotechnol. 2023 Feb;41(2):214-227. doi: 10.1016/j.tibtech.2022.07.014. Epub 2022 Aug 24.
8
Porous polymeric membranes: fabrication techniques and biomedical applications.
J Mater Chem B. 2021 Mar 11;9(9):2129-2154. doi: 10.1039/d0tb01727b.
9
An Integrated and Modular Compartmentalized Microfluidic System with Tunable Electrospun Porous Membranes for Epithelialized Organs-on-a-Chip.
ACS Appl Mater Interfaces. 2024 Aug 7;16(31):40767-40786. doi: 10.1021/acsami.4c08864. Epub 2024 Jul 24.
10
Synthesis and characterization of high-throughput nanofabricated poly(4-hydroxy styrene) membranes for in vitro models of barrier tissue.
Tissue Eng Part C Methods. 2012 Sep;18(9):667-76. doi: 10.1089/ten.TEC.2011.0598. Epub 2012 May 21.

引用本文的文献

2
Fabrication of a novel porous silicon biomembrane for applications in organ-on-chip technology.
Biomed Microdevices. 2025 Jun 23;27(3):32. doi: 10.1007/s10544-025-00760-3.
3
Development of a PEGylated Parylene Nanopocket Membrane for the Capture and Release of Lipid Vesicles.
bioRxiv. 2025 Jun 6:2025.06.02.657433. doi: 10.1101/2025.06.02.657433.
4
Study Models for Infection of the Female Reproductive Tract.
Microorganisms. 2025 Feb 28;13(3):553. doi: 10.3390/microorganisms13030553.
5
Developing human upper, lower, and deep lung airway models: Combining different scaffolds and developing complex co-cultures.
J Tissue Eng. 2025 Jan 30;16:20417314241299076. doi: 10.1177/20417314241299076. eCollection 2025 Jan-Dec.
6
ODSEI Chip: An Open 3D Microfluidic Platform for Studying Tumor Spheroid-Endothelial Interactions.
Adv Sci (Weinh). 2025 Apr;12(13):e2410659. doi: 10.1002/advs.202410659. Epub 2025 Jan 13.
7
Simple-Flow: A 3D-Printed Multiwell Flow Plate to Coculture Primary Human Lung Cells at the Air-Liquid Interface.
ACS Biomater Sci Eng. 2025 Jan 13;11(1):451-462. doi: 10.1021/acsbiomaterials.4c01322. Epub 2024 Dec 24.
8
9
Modular and extendable 1D-simulation for microfluidic devices.
Sci Rep. 2024 Nov 1;14(1):26311. doi: 10.1038/s41598-024-77741-8.
10
Optimization of Biofilm Formation in In Vitro Conditions Mimicking Stomach.
Int J Mol Sci. 2024 Sep 11;25(18):9839. doi: 10.3390/ijms25189839.

本文引用的文献

1
Nanoscale Matrix Topography Influences Microscale Cell Motility through Adhesions, Actin Organization, and Cell Shape.
ACS Biomater Sci Eng. 2017 Nov 13;3(11):2980-2986. doi: 10.1021/acsbiomaterials.6b00554. Epub 2016 Nov 21.
2
The Importance and Clinical Relevance of Surfaces in Tissue Culture.
ACS Biomater Sci Eng. 2016 Feb 8;2(2):152-164. doi: 10.1021/acsbiomaterials.5b00403. Epub 2016 Jan 8.
3
Finite element modeling to analyze TEER values across silicon nanomembranes.
Biomed Microdevices. 2018 Jan 5;20(1):11. doi: 10.1007/s10544-017-0251-7.
6
Membrane Pore Spacing Can Modulate Endothelial Cell-Substrate and Cell-Cell Interactions.
ACS Biomater Sci Eng. 2017;3(3):243-248. doi: 10.1021/acsbiomaterials.7b00055. Epub 2017 Feb 16.
10
Fabrication techniques enabling ultrathin nanostructured membranes for separations.
Electrophoresis. 2017 Oct;38(19):2374-2388. doi: 10.1002/elps.201700114. Epub 2017 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验