Fan Linpeng, Li Jing-Liang, Cai Zengxiao, Wang Xungai
Institute for Frontier Materials , Deakin University , Geelong , Victoria 3216 , Australia.
ACS Nano. 2018 Jun 26;12(6):5780-5790. doi: 10.1021/acsnano.8b01648. Epub 2018 Jun 1.
The continuous evolution of tissue engineering scaffolds has been driven by the desire to recapitulate structural features and functions of the natural extracellular matrix (ECM). However, it is still an extreme challenge to create a three-dimensional (3D) scaffold with both aligned nanofibers and aligned interconnected macrochannels to mimic the ECM of anisotropic tissues. Here, we develop a facile strategy to create such a scaffold composed of oriented nanofibers and interconnected macrochannels in the same direction, with various natural polymers typically used for tissue regeneration. The orientation of nanofibers and interconnected macrochannels can be easily tuned by manipulating ice crystallization. The scaffold demonstrates both structural and functional features similar to the natural ECM of anisotropic tissues. Taking silk fibroin as an example, the scaffold with radially oriented nanofibers and interconnected macrochannels is more efficient for capturing cells and promoting the growth of both nonadherent embryonic dorsal root ganglion neurons (DRGs) and adherent human umbilical vein endothelial cells (HUVECs) compared to the widely used scaffold types. Interestingly, DRGs and neurites on the SF scaffold demonstrate a 3D growth mode similar to that of natural nerve tissues. Furthermore, the coaligned nanofibers and macrochannels of the scaffold can direct HUVECs to assemble into blood vessel-like structures and their collagen deposition in their arrangement direction. The strategy could inspire the design and development of multifunctional 3D scaffolds with desirable structural features for engineering different tissues.
组织工程支架的不断发展是由重现天然细胞外基质(ECM)的结构特征和功能的愿望所驱动的。然而,创建一个具有排列的纳米纤维和排列的相互连接的大通道的三维(3D)支架以模拟各向异性组织的ECM仍然是一项极具挑战性的任务。在这里,我们开发了一种简便的策略来创建这样一种支架,该支架由沿同一方向排列的纳米纤维和相互连接的大通道组成,使用了各种通常用于组织再生的天然聚合物。通过控制冰结晶可以轻松调节纳米纤维和相互连接的大通道的取向。该支架展示出与各向异性组织的天然ECM相似的结构和功能特征。以丝素蛋白为例,与广泛使用的支架类型相比,具有径向排列的纳米纤维和相互连接的大通道的支架在捕获细胞以及促进非粘附性胚胎背根神经节神经元(DRG)和粘附性人脐静脉内皮细胞(HUVEC)生长方面更有效。有趣的是,SF支架上的DRG和神经突呈现出与天然神经组织相似的三维生长模式。此外,支架中排列一致的纳米纤维和大通道可以引导HUVEC组装成血管样结构,并使其胶原蛋白在其排列方向上沉积。该策略可能会激发具有理想结构特征的多功能3D支架的设计和开发,用于不同组织的工程构建。