Gu Wenxi, Yang Shuqi, Zhao Dazhe, Zou Yiwei, Chen Chonghao, Niu Peiqi, Liang Xiangyu, Kwok Chi Tat, Zhou Bingpu, Wang Chunming, Huang Yan Yan Shery, Liu Ji, Lei Iek Man
Department of Electromechanical Engineering, University of Macau, Macau 999078, China.
Centre for Artificial Intelligence and Robotics, University of Macau, Macau 999078, China.
Sci Adv. 2025 Jun 20;11(25):eadv7786. doi: 10.1126/sciadv.adv7786.
Materials with circumferentially aligned fibers, such as intervertebral discs and arteries, are abundant in nature but challenging to replicate artificially, despite their mechanical advantages. Although ice-templating can create bioinspired materials, the achievable structures remain limited to simple forms, such as honeycomb, lamellar, and radial structures. Here, we developed a unique ice-templating technique that constructs circumferential fibrous structures in hydrogels through slow freezing. Enhanced with rotary compression annealing, these hydrogels exhibit record-breaking features that cannot concurrently be achieved in conventional ice-templated and top-performing tough hydrogels, including high tensile properties, isotropic fatigue threshold of 2320 joules per square meter, ultracompressibility (8% strain after 500 cycles), and extraordinary burst pressure of 1.6 bar while maintaining 85 weight % water content. These properties enable opportunities in robotics, including hydrogel pneumatic grippers and an untethered bioinspired robotic fish that exhibits high-force actuation and long-term robustness. Our approach enriches the diversity of bioinspired structures in artificial materials, establishing exceptional mechanical properties through cross-length scale structural design.
具有周向排列纤维的材料,如椎间盘和动脉,在自然界中很丰富,但尽管具有机械优势,人工复制却具有挑战性。虽然冰模板法可以制造受生物启发的材料,但可实现的结构仍然局限于简单形式,如蜂窝状、层状和径向结构。在这里,我们开发了一种独特的冰模板技术,通过缓慢冷冻在水凝胶中构建周向纤维结构。通过旋转压缩退火增强后,这些水凝胶展现出破纪录的特性,这些特性在传统冰模板法制备的以及性能最佳的坚韧水凝胶中无法同时实现,包括高拉伸性能、每平方米2320焦耳的各向同性疲劳阈值、超压缩性(500次循环后应变8%)以及1.6巴的非凡爆破压力,同时保持85重量%的含水量。这些特性为机器人技术带来了机遇,包括水凝胶气动夹具和一种无需系绳的受生物启发的机器人鱼,该机器人鱼具有高力驱动和长期耐用性。我们的方法丰富了人造材料中受生物启发结构的多样性,通过跨长度尺度的结构设计建立了卓越的机械性能。