Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA.
Adv Healthc Mater. 2021 Jun;10(12):e2100238. doi: 10.1002/adhm.202100238. Epub 2021 May 24.
A new approach is described for fabricating 3D poly(ε-caprolactone) (PCL)/gelatin (1:1) nanofiber aerogels with patterned macrochannels and anisotropic microchannels by freeze-casting with 3D-printed sacrificial templates. Single layer or multiple layers of macrochannels are formed through an inverse replica of 3D-printed templates. Aligned microchannels formed by partially anisotropic freezing act as interconnected pores between templated macrochannels. The resulting macro-/microchannels within nanofiber aerogels significantly increase preosteoblast infiltration in vitro. The conjugation of vascular endothelial growth factor (VEGF)-mimicking QK peptide to PCL/gelatin/gelatin methacryloyl (1:0.5:0.5) nanofiber aerogels with patterned macrochannels promotes the formation of a microvascular network of seeded human microvascular endothelial cells. Moreover, nanofiber aerogels with patterned macrochannels and anisotropic microchannels show significantly enhanced cellular infiltration rates and host tissue integration compared to aerogels without macrochannels following subcutaneous implantation in rats. Taken together, this novel class of nanofiber aerogels holds great potential in biomedical applications including tissue repair and regeneration, wound healing, and 3D tissue/disease modeling.
一种新方法被描述用于制造具有图案化大通道和各向异性微通道的 3D 聚己内酯 (PCL)/明胶 (1:1) 纳米纤维气凝胶,该方法通过使用 3D 打印牺牲模板的冷冻铸造来实现。通过 3D 打印模板的反复制形成单层或多层大通道。部分各向异性冷冻形成的取向微通道作为模板化大通道之间的互联孔。纳米纤维气凝胶中大/微通道的形成显著增加了体外前成骨细胞的浸润。将血管内皮生长因子 (VEGF) 模拟 QK 肽接枝到具有图案化大通道的 PCL/明胶/明胶甲基丙烯酰 (1:0.5:0.5) 纳米纤维气凝胶上,促进了接种人微血管内皮细胞的微血管网络的形成。此外,与没有大通道的气凝胶相比,具有图案化大通道和各向异性微通道的纳米纤维气凝胶在大鼠皮下植入后具有显著提高的细胞浸润率和宿主组织整合能力。总的来说,这种新型纳米纤维气凝胶在生物医学应用中具有巨大的潜力,包括组织修复和再生、伤口愈合和 3D 组织/疾病建模。