Suppr超能文献

使用进化算法对冠状动脉狭窄进行自动分类的高维特征选择

High-Dimensional Feature Selection for Automatic Classification of Coronary Stenosis Using an Evolutionary Algorithm.

作者信息

Gil-Rios Miguel-Angel, Cruz-Aceves Ivan, Hernandez-Aguirre Arturo, Moya-Albor Ernesto, Brieva Jorge, Hernandez-Gonzalez Martha-Alicia, Solorio-Meza Sergio-Eduardo

机构信息

Tecnologías de Información, Universidad Tecnológica de León, Blvd. Universidad Tecnológica 225, Col. San Carlos, León 37670, Mexico.

CONACYT, Centro de Investigación en Matemáticas (CIMAT), A.C., Jalisco S/N, Col. Valenciana, Guanajuato 36000, Mexico.

出版信息

Diagnostics (Basel). 2024 Jan 26;14(3):268. doi: 10.3390/diagnostics14030268.

Abstract

In this paper, a novel strategy to perform high-dimensional feature selection using an evolutionary algorithm for the automatic classification of coronary stenosis is introduced. The method involves a feature extraction stage to form a bank of 473 features considering different types such as intensity, texture and shape. The feature selection task is carried out on a high-dimensional feature bank, where the search space is denoted by O(2n) and n=473. The proposed evolutionary search strategy was compared in terms of the Jaccard coefficient and accuracy classification with different state-of-the-art methods. The highest feature selection rate, along with the best classification performance, was obtained with a subset of four features, representing a 99% discrimination rate. In the last stage, the feature subset was used as input to train a support vector machine using an independent testing set. The classification of coronary stenosis cases involves a binary classification type by considering positive and negative classes. The highest classification performance was obtained with the four-feature subset in terms of accuracy (0.86) and Jaccard coefficient (0.75) metrics. In addition, a second dataset containing 2788 instances was formed from a public image database, obtaining an accuracy of 0.89 and a Jaccard Coefficient of 0.80. Finally, based on the performance achieved with the four-feature subset, they can be suitable for use in a clinical decision support system.

摘要

本文介绍了一种使用进化算法进行高维特征选择的新策略,用于冠状动脉狭窄的自动分类。该方法包括一个特征提取阶段,考虑强度、纹理和形状等不同类型,形成一个包含473个特征的库。特征选择任务在一个高维特征库上进行,其搜索空间由O(2n)表示,其中n = 473。将所提出的进化搜索策略与不同的先进方法在杰卡德系数和分类准确率方面进行了比较。使用四个特征的子集获得了最高的特征选择率以及最佳的分类性能,其判别率为99%。在最后阶段,该特征子集被用作输入,使用独立测试集训练支持向量机。冠状动脉狭窄病例的分类通过考虑阳性和阴性类别涉及二元分类类型。就准确率(0.86)和杰卡德系数(0.75)指标而言,四个特征的子集获得了最高的分类性能。此外,从一个公共图像数据库中形成了一个包含2788个实例的第二个数据集,准确率为0.89,杰卡德系数为0.80。最后,基于四个特征子集所取得的性能,它们适用于临床决策支持系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/080d/10855604/6bbd53047f8e/diagnostics-14-00268-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验