Suppr超能文献

自动分割心房区域和卵圆窝,以辅助规划房间隔壁介入。

Automated segmentation of the atrial region and fossa ovalis towards computer-aided planning of inter-atrial wall interventions.

机构信息

Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Faculdade de Engenharia, Universidade do Porto, Portugal; Lab on Cardiovascular Imaging & Dynamics, Department of Cardiovascular Sciences, KULeuven - University of Leuven, Leuven, Belgium.

Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; 2Ai - Polytechnic Institute of Cávado and Ave, Barcelos, Portugal.

出版信息

Comput Methods Programs Biomed. 2018 Jul;161:73-84. doi: 10.1016/j.cmpb.2018.04.014. Epub 2018 Apr 18.

Abstract

BACKGROUND AND OBJECTIVE

Image-fusion strategies have been applied to improve inter-atrial septal (IAS) wall minimally-invasive interventions. Hereto, several landmarks are initially identified on richly-detailed datasets throughout the planning stage and then combined with intra-operative images, enhancing the relevant structures and easing the procedure. Nevertheless, such planning is still performed manually, which is time-consuming and not necessarily reproducible, hampering its regular application. In this article, we present a novel automatic strategy to segment the atrial region (left/right atrium and aortic tract) and the fossa ovalis (FO).

METHODS

The method starts by initializing multiple 3D contours based on an atlas-based approach with global transforms only and refining them to the desired anatomy using a competitive segmentation strategy. The obtained contours are then applied to estimate the FO by evaluating both IAS wall thickness and the expected FO spatial location.

RESULTS

The proposed method was evaluated in 41 computed tomography datasets, by comparing the atrial region segmentation and FO estimation results against manually delineated contours. The automatic segmentation method presented a performance similar to the state-of-the-art techniques and a high feasibility, failing only in the segmentation of one aortic tract and of one right atrium. The FO estimation method presented an acceptable result in all the patients with a performance comparable to the inter-observer variability. Moreover, it was faster and fully user-interaction free.

CONCLUSIONS

Hence, the proposed method proved to be feasible to automatically segment the anatomical models for the planning of IAS wall interventions, making it exceptionally attractive for use in the clinical practice.

摘要

背景与目的

影像融合策略已被应用于改善房间隔(IAS)壁微创介入治疗。为此,在规划阶段,最初会在详细的数据集上识别出几个标志点,然后将其与术中图像相结合,以增强相关结构并简化手术过程。然而,这种规划仍然是手动进行的,既耗时又不一定具有可重复性,阻碍了其常规应用。在本文中,我们提出了一种新的自动策略,用于分割心房区域(左/右心房和主动脉道)和卵圆孔(FO)。

方法

该方法首先基于基于图谱的方法初始化多个 3D 轮廓,仅使用全局变换,并使用竞争分割策略将其细化到所需的解剖结构。然后,将获得的轮廓应用于通过评估 IAS 壁厚和预期 FO 空间位置来估计 FO。

结果

在 41 个 CT 数据集上对所提出的方法进行了评估,通过将心房区域分割和 FO 估计结果与手动勾画的轮廓进行比较。与最先进的技术相比,自动分割方法的性能相似,且可行性高,仅在一个主动脉道和一个右心房的分割中失败。FO 估计方法在所有患者中均能得到可接受的结果,其性能与观察者间变异性相当。此外,它更快且完全无需用户交互。

结论

因此,所提出的方法被证明可用于自动分割 IAS 壁介入治疗的解剖模型,使其在临床实践中具有特别的吸引力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验