Department of Biomedical Engineering, School of information Science and Technology, Fudan University, Shanghai, 200433, China.
Academy for Engineering and Technology, Fudan University, Fudan University, Shanghai, 200433, China.
BMC Cardiovasc Disord. 2024 Oct 17;24(1):571. doi: 10.1186/s12872-024-04250-x.
Late gadolinium enhancement cardiac magnetic resonance imaging (LGE-CMR) is a valuable cardiovascular imaging technique. Segmentation of cardiac chambers from LGE-CMR is a fundamental step in electrophysiological modeling and cardiovascular disease diagnosis. Deep learning methods have demonstrated extremely promising performance. However, excellent performance often depended on a large amount of finely annotated data. The purpose of this manuscript was to develop a semi-supervised segmentation method to use unlabeled data to improve model performance.
This manuscript proposed a semi-supervised network that integrates triple-consistency constraints (data-level, task-level, and feature-level) for cardiac chambers segmentation from LGE-CMR. Specifically, we designed a network that integrated segmentation and edge prediction tasks based on the mean teacher architecture. This addressed the problem of ignoring some challenging regions because of excluding low-confidence regions of previous research. We also applied a voxel-level contrastive learning strategy to achieve feature-level consistency, helping the model pay attention to the consistency between features overlooked in previous research.
In terms of the Dice, Jaccard, Average Surface Distance (ASD), and 95% Hausdorff Distance (95HD) metrics, for the atrial segmentation dataset, the proposed method achieved scores of 88.34%, 79.30%, 7.92, and 2.02 when trained with 10% labeled data, and 90.70%, 83.09%, 6.41, and 1.72 when trained with 20% labeled data. For the ventricular segmentation task, the results were 87.22%, 77.95%, 2.27, and 0.61 with 10% labeled data, and 88.99%, 80.45%, 1.87, and 0.51 with 20% labeled data, respectively.
Experiments demonstrated that our method outperforms previous semi-supervised methods, showing the potential of the proposed network for semi-supervised segmentation problems.
钆延迟增强心脏磁共振成像(LGE-CMR)是一种有价值的心血管成像技术。从 LGE-CMR 中分割心脏腔室是电生理建模和心血管疾病诊断的基本步骤。深度学习方法已经表现出非常有前途的性能。然而,出色的性能通常依赖于大量精细注释的数据。本文的目的是开发一种半监督分割方法,以利用未标记的数据来提高模型性能。
本文提出了一种半监督网络,该网络集成了三重一致性约束(数据级、任务级和特征级),用于从 LGE-CMR 中分割心脏腔室。具体来说,我们设计了一个基于均值教师架构的分割和边缘预测任务集成的网络。这解决了由于排除以前研究中低置信度区域而忽略一些具有挑战性区域的问题。我们还应用了体素级对比学习策略来实现特征级一致性,帮助模型关注以前研究中忽略的特征之间的一致性。
在 Dice、Jaccard、平均表面距离(ASD)和 95%Hausdorff 距离(95HD)度量方面,对于心房分割数据集,当用 10%的标记数据训练时,该方法的得分分别为 88.34%、79.30%、7.92 和 2.02,当用 20%的标记数据训练时,得分分别为 90.70%、83.09%、6.41 和 1.72。对于心室分割任务,当用 10%的标记数据训练时,结果分别为 87.22%、77.95%、2.27 和 0.61,当用 20%的标记数据训练时,结果分别为 88.99%、80.45%、1.87 和 0.51。
实验表明,我们的方法优于以前的半监督方法,表明所提出的网络在半监督分割问题上的潜力。