Department of Ophthalmology, Upstate Medical University, Syracuse, New York 13210.
Department of Ophthalmology, Upstate Medical University, Syracuse, New York 13210
J Neurosci. 2018 Jun 27;38(26):5996-6010. doi: 10.1523/JNEUROSCI.0551-18.2018. Epub 2018 May 31.
Vertebrate retinal development follows a pattern during which retinal progenitor cells (RPCs) give rise to all retinal cell types in a highly conserved temporal sequence. RPC proliferation and cell cycle exit are tightly coordinated to ensure proper and timely production of each of the retinal cell types. Extracellular matrix (ECM) plays an important role in eye development, influencing RPC proliferation and differentiation. In this study, we demonstrate that laminins, key ECM components, in the inner limiting membrane, control mitotic spindle orientation by providing environmental cues to the RPCs. deletion of laminin β2 in mice of both sexes results in a loss RPC basal processes and contact with the ECM, leading to a shift of the mitotic spindle pole orientation toward asymmetric cell divisions. This leads to decreased proliferation and premature RPC pool depletion, resulting in overproduction of rod photoreceptors at the expense of bipolar cells and Müller glia. Moreover, we show that deletion of laminin β2 leads to disruption and mislocalization of its receptors: dystroglycan and β1-integrin. Addition of exogenous β2-containing laminins to laminin β2-deficient retinal explants stabilizes the RPC basal processes and directs their mitotic spindle orientation toward symmetric divisions, leading to increased RPC proliferation, as well as restores proper receptor localization at the retinal surface. Finally, functional blocking of dystroglycan in wild-type retinal explants phenocopies laminin β2 ablation. Our data suggest that dystroglycan-mediated signaling between RPCs and the ECM is of key importance in controlling critical developmental events during retinogenesis. The mechanisms governing retinogenesis are subject to both intrinsic and extrinsic signaling cues. Although the role of intrinsic signaling has been the subject of many studies, our understanding of the role of the microenvironment in retinal development remains unclear. Using a combination of and approaches, we demonstrate that laminins, key extracellular matrix components, provide signaling cues that control retinal progenitor cell attachment to the basement membrane, mitotic axis, proliferation, and fate adoption. Moreover, we identify, for the first time, dystroglycan as the receptor responsible for directing retinal progenitor cell mitotic spindle orientation. Our data suggest a mechanism where dystroglycan-mediated signaling between the cell and the extracellular matrix controls the proliferative potential of progenitors in the developing CNS.
脊椎动物视网膜的发育遵循一个模式,在此模式中,视网膜祖细胞 (RPC) 按照高度保守的时间顺序产生所有视网膜细胞类型。RPC 的增殖和细胞周期退出是紧密协调的,以确保每种视网膜细胞类型的正确和及时产生。细胞外基质 (ECM) 在眼睛发育中起着重要作用,影响 RPC 的增殖和分化。在这项研究中,我们证明了内界膜中的层粘连蛋白等 ECM 成分通过向 RPC 提供环境线索来控制有丝分裂纺锤体的取向。在雌雄小鼠中敲除层粘连蛋白 β2 会导致 RPC 基底过程和与 ECM 的接触丧失,导致有丝分裂纺锤体极取向向不对称细胞分裂转移。这导致增殖减少和 RPC 池过早耗竭,导致视杆光感受器过度产生,而双极细胞和 Müller 胶质细胞减少。此外,我们还表明,层粘连蛋白 β2 的缺失导致其受体: dystroglycan 和 β1-integrin 的破坏和定位错误。将外源性含有 β2 的层粘连蛋白添加到层粘连蛋白 β2 缺陷的视网膜外植体中可稳定 RPC 基底过程并将其有丝分裂纺锤体取向引导至对称分裂,从而增加 RPC 的增殖,并恢复视网膜表面受体的正确定位。最后,在野生型视网膜外植体中功能性阻断 dystroglycan 可模拟层粘连蛋白 β2 缺失的表型。我们的数据表明,RPC 与 ECM 之间的 dystroglycan 介导的信号在控制视网膜发生过程中的关键发育事件中非常重要。视网膜发生的机制受到内在和外在信号的影响。尽管内在信号的作用已经是许多研究的主题,但我们对微环境在视网膜发育中的作用的理解仍然不清楚。我们使用 和 方法的组合,证明了层粘连蛋白等关键细胞外基质成分提供了信号线索,控制视网膜祖细胞附着到基底膜、有丝分裂轴、增殖和命运选择。此外,我们首次确定了 dystroglycan 是负责指导视网膜祖细胞有丝分裂纺锤体取向的受体。我们的数据提出了一种机制,其中细胞与细胞外基质之间的 dystroglycan 介导的信号控制了发育中中枢神经系统中祖细胞的增殖潜力。