Suppr超能文献

基于自适应套索的空间自回归模型进行遗传风险预测。

Genetic risk prediction using a spatial autoregressive model with adaptive lasso.

机构信息

Department of Statistics, University of Auckland, Auckland, New Zealand.

Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA.

出版信息

Stat Med. 2018 Nov 20;37(26):3764-3775. doi: 10.1002/sim.7832. Epub 2018 May 31.

Abstract

With rapidly evolving high-throughput technologies, studies are being initiated to accelerate the process toward precision medicine. The collection of the vast amounts of sequencing data provides us with great opportunities to systematically study the role of a deep catalog of sequencing variants in risk prediction. Nevertheless, the massive amount of noise signals and low frequencies of rare variants in sequencing data pose great analytical challenges on risk prediction modeling. Motivated by the development in spatial statistics, we propose a spatial autoregressive model with adaptive lasso (SARAL) for risk prediction modeling using high-dimensional sequencing data. The SARAL is a set-based approach, and thus, it reduces the data dimension and accumulates genetic effects within a single-nucleotide variant (SNV) set. Moreover, it allows different SNV sets having various magnitudes and directions of effect sizes, which reflects the nature of complex diseases. With the adaptive lasso implemented, SARAL can shrink the effects of noise SNV sets to be zero and, thus, further improve prediction accuracy. Through simulation studies, we demonstrate that, overall, SARAL is comparable to, if not better than, the genomic best linear unbiased prediction method. The method is further illustrated by an application to the sequencing data from the Alzheimer's Disease Neuroimaging Initiative.

摘要

随着高通量技术的快速发展,正在开展研究以加速精准医学的发展进程。大量测序数据的收集为我们提供了系统研究深度测序变体目录在风险预测中的作用的巨大机会。然而,测序数据中大量的噪声信号和罕见变体的低频对风险预测建模提出了巨大的分析挑战。受空间统计学发展的启发,我们提出了一种基于空间自回归模型的自适应套索(SARAL)方法,用于使用高维测序数据进行风险预测建模。SARAL 是一种基于集合的方法,因此可以降低数据维度,并在单个单核苷酸变体 (SNV) 集合内累积遗传效应。此外,它允许具有不同幅度和方向的效应大小的不同 SNV 集合,反映了复杂疾病的本质。通过实施自适应套索,SARAL 可以将噪声 SNV 集合的效应收缩为零,从而进一步提高预测准确性。通过模拟研究,我们证明 SARAL 总体上与基因组最佳线性无偏预测方法相当,如果不是更好的话。该方法通过对阿尔茨海默病神经影像学倡议的测序数据的应用进一步说明了这一点。

相似文献

本文引用的文献

2
A new initiative on precision medicine.一项关于精准医学的新倡议。
N Engl J Med. 2015 Feb 26;372(9):793-5. doi: 10.1056/NEJMp1500523. Epub 2015 Jan 30.
5
A variant within FGF1 is associated with Alzheimer's disease in the Han Chinese population.一个 FGF1 内的变异与汉族人群的阿尔茨海默病相关。
Am J Med Genet B Neuropsychiatr Genet. 2014 Mar;165B(2):131-6. doi: 10.1002/ajmg.b.32205. Epub 2014 Jan 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验