Suppr超能文献

输入依赖性调制的 MEG 伽马振荡反映了视觉皮层中的增益控制。

Input-dependent modulation of MEG gamma oscillations reflects gain control in the visual cortex.

机构信息

University of Gothenburg, Gillberg Neuropsychiatry Centre (GNC), Gothenburg, Sweden.

Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russia.

出版信息

Sci Rep. 2018 May 31;8(1):8451. doi: 10.1038/s41598-018-26779-6.

Abstract

Gamma-band oscillations arise from the interplay between neural excitation (E) and inhibition (I) and may provide a non-invasive window into the state of cortical circuitry. A bell-shaped modulation of gamma response power by increasing the intensity of sensory input was observed in animals and is thought to reflect neural gain control. Here we sought to find a similar input-output relationship in humans with MEG via modulating the intensity of a visual stimulation by changing the velocity/temporal-frequency of visual motion. In the first experiment, adult participants observed static and moving gratings. The frequency of the MEG gamma response monotonically increased with motion velocity whereas power followed a bell-shape. In the second experiment, on a large group of children and adults, we found that despite drastic developmental changes in frequency and power of gamma oscillations, the relative suppression at high motion velocities was scaled to the same range of values across the life-span. In light of animal and modeling studies, the modulation of gamma power and frequency at high stimulation intensities characterizes the capacity of inhibitory neurons to counterbalance increasing excitation in visual networks. Gamma suppression may thus provide a non-invasive measure of inhibitory-based gain control in the healthy and diseased brain.

摘要

伽马波段振荡源于神经元兴奋(E)和抑制(I)之间的相互作用,可能为皮层电路状态提供非侵入性窗口。在动物中观察到伽马反应功率随感觉输入强度增加呈钟形调制,被认为反映了神经增益控制。在这里,我们通过改变视觉运动的速度/时频来调制视觉刺激的强度,试图在人类的 MEG 中找到类似的输入-输出关系。在第一个实验中,成年参与者观察静态和运动光栅。MEG 伽马反应的频率随运动速度单调增加,而功率则呈钟形。在第二个实验中,我们在一大群儿童和成人中发现,尽管伽马振荡的频率和功率在发育过程中发生了巨大变化,但在高运动速度下的相对抑制被扩展到整个生命跨度的相同值范围内。鉴于动物和建模研究,高刺激强度下的伽马功率和频率的调制表征了抑制性神经元在视觉网络中对抗不断增加的兴奋的能力。因此,伽马抑制可能为健康和患病大脑中的基于抑制的增益控制提供一种非侵入性测量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c7d/5981429/f3994277b5ce/41598_2018_26779_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验