Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
Phys Chem Chem Phys. 2018 Jun 13;20(23):16159-16166. doi: 10.1039/c8cp01305e.
The oxygen reduction reaction (ORR), which is widely employed for energy harvesting and environmental purification, requires an electrode kinetic equation for assessing the electron transfer (ET) and oxygen mass transfer (OMT). Herein, we establish a new kinetic equation in conjunction with the ET kinetics and OMT flux, creating a parameter (kO2) characterizing the effect of OMT. This equation allows for the nonlinear fitting of polarizations in full scale and outputs reliable parameters, including α (ET coefficient), j0 (exchange current density) and kO2. The performance is superior to the Tafel equation by outputting reliable values of α and j0, and covers the function of the Koutecky-Levich equation to calculate the electron transfer number (n) as well. Furthermore, by means of kO2, the assessment of OMT becomes available, disclosing the facilitating effect brought about by the porous structure on the ORR rate. Consequently, the new equation provides a reliable and facile approach for assessing the performance of electrode reaction systems and electrocatalysts.
氧还原反应(ORR)广泛应用于能量收集和环境净化,需要一个电极动力学方程来评估电子转移(ET)和氧气传质(OMT)。在此,我们结合 ET 动力学和 OMT 通量建立了一个新的动力学方程,创建了一个参数(kO2)来描述 OMT 的影响。该方程可以对全极化进行非线性拟合,并输出可靠的参数,包括α(ET 系数)、j0(交换电流密度)和 kO2。该方程的性能优于 Tafel 方程,因为它可以输出可靠的α和 j0 值,并涵盖了 Koutecky-Levich 方程的功能,用于计算电子转移数(n)。此外,通过 kO2,可以评估 OMT,揭示多孔结构对 ORR 速率的促进作用。因此,新方程为评估电极反应体系和电催化剂的性能提供了一种可靠和简便的方法。