Suppr超能文献

用于储能应用的具有超高能量和功率密度的基底工程化互联石墨烯电极。

Substrate Engineered Interconnected Graphene Electrodes with Ultrahigh Energy and Power Densities for Energy Storage Applications.

机构信息

Department of Mechanical and Industrial Engineering , Louisiana State University , Baton Rouge , Louisiana 70803 , United States.

出版信息

ACS Appl Mater Interfaces. 2018 Jun 27;10(25):21235-21245. doi: 10.1021/acsami.8b03020. Epub 2018 Jun 12.

Abstract

Supercapacitors combine the advantages of electrochemical storage technologies such as high energy density batteries and high power density capacitors. At 5-10 W h kg, the energy densities of current supercapacitors are still significantly lower than the energy densities of lead acid (20-35 W h kg), Ni-metal hydride (40-100 W h kg), and Li-ion (120-170 W h kg) batteries. Recently, graphene-based supercapacitors have shown an energy density of 40-80 W h kg. However, their performance is mainly limited because of the reversible agglomeration and restacking of individual graphene layers caused by π-π interactions. The restacking of graphene layers leads to significant decrease of ion-accessible surface area and the low capacitance of graphene-based supercapacitors. Here, we introduce a microstructure substrate-based method to produce a fully delaminated and stable interconnected graphene structure using flash reduction of graphene oxide in a few seconds. With this structure, we achieve the highest amount of volumetric capacitance obtained so far by any type of a pure carbon-based material. The affordable and scalable production method is capable of producing electrodes with an energy density of 0.37 W h cm and a power density of 416.6 W cm. This electrode maintained more than 91% of its initial capacitance after 5000 cycles. Moreover, combining with ionic liquid, this solvent-free graphene electrode material is highly promising for on-chip electronics, micro-supercapacitors, as well as high-power applications.

摘要

超级电容器结合了电化学储能技术的优点,如高能量密度电池和高功率密度电容器。目前超级电容器的能量密度在 5-10 W h kg 之间,仍然明显低于铅酸电池(20-35 W h kg)、镍金属氢化物(40-100 W h kg)和锂离子电池(120-170 W h kg)的能量密度。最近,基于石墨烯的超级电容器的能量密度达到了 40-80 W h kg。然而,它们的性能主要受到限制,因为π-π 相互作用导致单个石墨烯层的可逆团聚和堆积。石墨烯层的堆积导致离子可及表面积显著减小,从而降低了基于石墨烯的超级电容器的电容。在这里,我们介绍了一种基于微观结构基底的方法,通过在几秒钟内将氧化石墨烯进行闪光还原,生成完全分层和稳定互联的石墨烯结构。利用这种结构,我们实现了迄今为止任何类型纯碳基材料中最高的体积电容。这种经济且可扩展的生产方法能够生产出能量密度为 0.37 W h cm、功率密度为 416.6 W cm 的电极。该电极在 5000 次循环后仍保持初始电容的 91%以上。此外,与离子液体结合,这种无溶剂的石墨烯电极材料在片上电子、微超级电容器以及高功率应用方面极具应用前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验