Suppr超能文献

使用外推蒂霍诺夫滤波进行光声断层扫描的加速图像重建

Accelerated image reconstruction using extrapolated Tikhonov filtering for photoacoustic tomography.

作者信息

Gutta Sreedevi, Kalva Sandeep Kumar, Pramanik Manojit, Yalavarthy Phaneendra K

机构信息

Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, 560 012, India.

School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore.

出版信息

Med Phys. 2018 Jun 1. doi: 10.1002/mp.13023.

Abstract

PURPOSE

Development of simple and computationally efficient extrapolated Tikhonov filtering reconstruction methods for photoacoustic tomography.

METHODS

The model-based reconstruction algorithms in photoacoustic tomography typically utilize Tikhonov regularization scheme for the reconstruction of initial pressure distribution from the measured boundary acoustic data. The automated choice of regularization parameter in these cases is computationally expensive. Moreover, the Tikhonov scheme promotes the smooth features in the reconstructed image due to the smooth regularizer, thus leading to loss of sharp features. The proposed extrapolation method estimates the solution at zero regularization assuming the solution being a function of regularization parameter and thus posing it as a zero value problem. Thus, the numerically computed zero regularization solution is expected to have better features compared to standard Tikhonov solution, with an added advantage of removing the necessity of automated choice of regularization. The reconstructed results using this method were shown in three variants (Lanczos, traditional, and exponential) of Tikhonov filtering and were compared with the standard error estimate technique.

RESULTS

Four numerical (including realistic breast phantom) and two experimental phantom data were utilized to show the effectiveness of the proposed method. It was shown that the proposed method performance was superior than the standard error estimate technique, being at least four times faster in terms of computation, and provides an improvement as high as 2.6 times in terms of standard figures of merit.

CONCLUSION

The developed extrapolated Tikhonov filtering methods overcome the difficulty of obtaining a suitable regularization parameter and shown to be reconstructing high-quality photoacoustic images with additional advantage of being computationally efficient, making it more appealing in real-time applications.

摘要

目的

开发用于光声层析成像的简单且计算高效的外推蒂霍诺夫滤波重建方法。

方法

光声层析成像中基于模型的重建算法通常利用蒂霍诺夫正则化方案,从测量的边界声学数据重建初始压力分布。在这些情况下,自动选择正则化参数在计算上代价高昂。此外,由于平滑正则化器,蒂霍诺夫方案会促进重建图像中的平滑特征,从而导致尖锐特征丢失。所提出的外推方法假设解是正则化参数的函数,从而将其作为零值问题来估计零正则化时的解。因此,与标准蒂霍诺夫解相比,数值计算得到的零正则化解预计具有更好的特征,还有一个额外的优点是无需自动选择正则化参数。使用该方法的重建结果在蒂霍诺夫滤波的三种变体(兰索斯、传统和指数)中进行了展示,并与标准误差估计技术进行了比较。

结果

利用四个数值(包括逼真的乳房模型)和两个实验模型数据来证明所提出方法的有效性。结果表明,所提出的方法性能优于标准误差估计技术,计算速度至少快四倍,并且在标准品质因数方面提高高达2.6倍。

结论

所开发的外推蒂霍诺夫滤波方法克服了获得合适正则化参数的困难,并被证明能够重建高质量的光声图像,还具有计算效率高的额外优点,使其在实时应用中更具吸引力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验