Li Zilong, Lin Jiabin, Wang Yiguang, Li Jiahong, Cao Yubin, Liu Xuan, Wan Wenbo, Liu Qiegen, Song Xianlin
School of Information Engineering, Nanchang University, Nanchang 330031, China.
Photoacoustics. 2024 Nov 27;41:100670. doi: 10.1016/j.pacs.2024.100670. eCollection 2025 Feb.
Photoacoustic tomography, a novel non-invasive imaging modality, combines the principles of optical and acoustic imaging for use in biomedical applications. In scenarios where photoacoustic signal acquisition is insufficient due to sparse-view sampling, conventional direct reconstruction methods significantly degrade image resolution and generate numerous artifacts. To mitigate these constraints, a novel sinogram-domain priors guided extremely sparse-view reconstruction method for photoacoustic tomography boosted by enhanced diffusion model is proposed. The model learns prior information from the data distribution of sinograms under full-ring, 512-projections. In iterative reconstruction, the prior information serves as a constraint in least-squares optimization, facilitating convergence towards more plausible solutions. The performance of the method is evaluated using blood vessel simulation, phantoms, and experimental data. Subsequently, the transformation of the reconstructed sinograms into the image domain is achieved through the delay-and-sum method, enabling a thorough assessment of the proposed method. The results show that the proposed method demonstrates superior performance compared to the U-Net method, yielding images of markedly higher quality. Notably, for data under 32 projections, the sinogram structural similarity improved by ∼21 % over U-Net, and the image structural similarity increased by ∼51 % and ∼84 % compared to U-Net and delay-and-sum methods, respectively. The reconstruction in the sinogram domain for photoacoustic tomography enhances sparse-view imaging capabilities, potentially expanding the applications of photoacoustic tomography.
光声层析成像作为一种新型的非侵入性成像方式,结合了光学成像和声学成像原理,用于生物医学应用。在由于稀疏视图采样导致光声信号采集不足的情况下,传统的直接重建方法会显著降低图像分辨率并产生大量伪影。为了缓解这些限制,提出了一种由增强扩散模型推动的用于光声层析成像的新型正弦图域先验引导的极稀疏视图重建方法。该模型从全环512投影下的正弦图数据分布中学习先验信息。在迭代重建中,先验信息作为最小二乘优化中的约束,有助于收敛到更合理的解。使用血管模拟、体模和实验数据对该方法的性能进行评估。随后,通过延迟求和方法将重建的正弦图转换到图像域,从而能够对所提出的方法进行全面评估。结果表明,所提出的方法与U-Net方法相比具有卓越的性能,生成的图像质量明显更高。值得注意的是,对于32投影下的数据,与U-Net相比,正弦图结构相似性提高了约21%,与U-Net和延迟求和方法相比,图像结构相似性分别提高了约51%和84%。光声层析成像在正弦图域的重建增强了稀疏视图成像能力,可能会扩展光声层析成像的应用。