Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
School of Pharmacy, University of East Anglia, Norwich, NR4 7TJ, UK.
Chembiochem. 2019 Jan 18;20(2):181-192. doi: 10.1002/cbic.201800260. Epub 2018 Jul 4.
Glycoside phosphorylases (GPs) carry out a reversible phosphorolysis of carbohydrates into oligosaccharide acceptors and the corresponding sugar 1-phosphates. The reversibility of the reaction enables the use of GPs as biocatalysts for carbohydrate synthesis. Glycosyl hydrolase family 94 (GH94), which only comprises GPs, is one of the most studied GP families that have been used as biocatalysts for carbohydrate synthesis, in academic research and in industrial production. Understanding the mechanism of GH94 enzymes is a crucial step towards enzyme engineering to improve and expand the applications of these enzymes in synthesis. In this work with a GH94 laminaribiose phosphorylase from Paenibacillus sp. YM-1 (PsLBP), we have demonstrated an enzymatic synthesis of disaccharide 1 (β-d-mannopyranosyl-(1→3)-d-glucopyranose) by using a natural acceptor glucose and noncognate donor substrate α-mannose 1-phosphate (Man1P). To investigate how the enzyme recognises different sugar 1-phosphates, the X-ray crystal structures of PsLBP in complex with Glc1P and Man1P have been solved, providing the first molecular detail of the recognition of a noncognate donor substrate by GPs, which revealed the importance of hydrogen bonding between the active site residues and hydroxy groups at C2, C4, and C6 of sugar 1-phosphates. Furthermore, we used saturation transfer difference NMR spectroscopy to support crystallographic studies on the sugar 1-phosphates, as well as to provide further insights into the PsLBP recognition of the acceptors and disaccharide products.
糖苷磷酸化酶(GPs)能够可逆地将碳水化合物磷酸解为寡糖受体和相应的糖 1-磷酸。该反应的可逆性使 GPs 能够作为糖合成的生物催化剂使用。糖苷水解酶家族 94(GH94)仅由 GPs 组成,是作为糖合成生物催化剂在学术研究和工业生产中使用的研究最多的 GP 家族之一。了解 GH94 酶的机制是酶工程的关键步骤,旨在改善和扩展这些酶在合成中的应用。在这项来自 Paenibacillus sp. YM-1 的 GH94 纤维二糖磷酸化酶(PsLBP)的工作中,我们通过使用天然受体葡萄糖和非天然供体底物 α-甘露糖 1-磷酸(Man1P)证明了二糖 1(β-d-吡喃甘露糖基-(1→3)-d-吡喃葡萄糖)的酶促合成。为了研究酶如何识别不同的糖 1-磷酸,我们解析了 PsLBP 与 Glc1P 和 Man1P 复合物的 X 射线晶体结构,首次提供了 GP 识别非天然供体底物的分子细节,揭示了活性位点残基与糖 1-磷酸的 C2、C4 和 C6 羟基之间氢键的重要性。此外,我们使用饱和转移差异 NMR 光谱学来支持糖 1-磷酸的晶体学研究,并进一步了解 PsLBP 对受体和二糖产物的识别。