Department of Pathology, Yale University, New Haven, CT 06520, USA.
Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA.
Acta Biomater. 2018 Jul 15;75:427-438. doi: 10.1016/j.actbio.2018.05.051. Epub 2018 Jun 1.
Polarization of macrophages by chemical, topographical and mechanical cues presents a robust strategy for designing immunomodulatory biomaterials. Here, we studied the ability of nanopatterned bulk metallic glasses (BMGs), a new class of metallic biomaterials, to modulate murine macrophage polarization. Cytokine/chemokine analysis of IL-4 or IFNγ/LPS-stimulated macrophages showed that the secretion of TNF-α, IL-1α, IL-12, CCL-2 and CXCL1 was significantly reduced after 24-hour culture on BMGs with 55 nm nanorod arrays (BMG-55). Additionally, under these conditions, macrophages increased phagocytic potential and exhibited decreased cell area with multiple actin protrusions. These in vitro findings suggest that nanopatterning can modulate biochemical cues such as IFNγ/LPS. In vivo evaluation of the subcutaneous host response at 2 weeks demonstrated that the ratio of Arg-1 to iNOS increased in macrophages adjacent to BMG-55 implants, suggesting modulation of polarization. In addition, macrophage fusion and fibrous capsule thickness decreased and the number and size of blood vessels increased, which is consistent with changes in macrophage responses. Our study demonstrates that nanopatterning of BMG implants is a promising technique to selectively polarize macrophages to modulate the immune response, and also presents an effective tool to study mechanisms of macrophage polarization and function.
Implanted biomaterials elicit a complex series of tissue and cellular responses, termed the foreign body response (FBR), that can be influenced by the polarization state of macrophages. Surface topography can influence polarization, which is broadly characterized as either inflammatory or repair-like. The latter has been linked to improved outcomes of the FBR. However, the impact of topography on macrophage polarization is not fully understood, in part, due to a lack of high moduli biomaterials that can be reproducibly processed at the nanoscale. Here, we studied macrophage interactions with nanopatterned bulk metallic glasses (BMGs), a class of metallic alloys with amorphous microstructure and formability like polymers. We show that nanopatterned BMGs modulate macrophage polarization and transiently induce less fibrotic and more angiogenic responses. Overall, we demonstrate nanopatterning of BMG implants as a technique to polarize macrophages and modulate the FBR.
通过化学、拓扑和机械线索极化巨噬细胞为设计免疫调节生物材料提供了一种强大的策略。在这里,我们研究了纳米图案大块金属玻璃 (BMG) 的能力,这是一类新的金属生物材料,可以调节小鼠巨噬细胞的极化。细胞因子/趋化因子分析表明,在具有 55nm 纳米棒阵列的 BMG 上培养 24 小时后,IL-4 或 IFNγ/LPS 刺激的巨噬细胞中 TNF-α、IL-1α、IL-12、CCL-2 和 CXCL1 的分泌显著减少。此外,在这些条件下,巨噬细胞增加了吞噬能力,并表现出细胞面积减小和多个肌动蛋白突起。这些体外发现表明,纳米图案可以调节生化线索,如 IFNγ/LPS。在 2 周时的皮下宿主反应的体内评估表明,与 BMG-55 植入物相邻的巨噬细胞中 Arg-1 与 iNOS 的比值增加,表明极化发生了变化。此外,巨噬细胞融合和纤维囊厚度减少,血管数量和大小增加,这与巨噬细胞反应的变化一致。我们的研究表明,BMG 植入物的纳米图案化是一种有前途的技术,可以选择性地极化巨噬细胞,从而调节免疫反应,并且还提供了一种研究巨噬细胞极化和功能机制的有效工具。
植入的生物材料会引起一系列复杂的组织和细胞反应,称为异物反应 (FBR),可以通过巨噬细胞的极化状态来影响。表面形貌会影响极化,极化通常分为炎症性或修复样。后者与 FBR 的改善结果有关。然而,由于缺乏能够在纳米尺度上可重复加工的高模量生物材料,因此,形貌对巨噬细胞极化的影响还不完全清楚。在这里,我们研究了巨噬细胞与纳米图案大块金属玻璃 (BMG) 的相互作用,BMG 是一种具有非晶态微观结构和聚合物般可成型性的金属合金。我们表明,纳米图案化的 BMG 调节巨噬细胞的极化,并短暂地诱导较少的纤维化和更多的血管生成反应。总的来说,我们证明了 BMG 植入物的纳米图案化是一种极化巨噬细胞和调节 FBR 的技术。