Institute for Neuroscience and Physiology, University of Gothenburg, Box 436, 405 30 Gothenburg, Sweden; The Queen Silvia Children's Hospital, Sahlgrenska University Hospital, 416 85 Gothenburg, Sweden.
Institute for Neuroscience and Physiology, University of Gothenburg, Box 436, 405 30 Gothenburg, Sweden.
Neuroscience. 2018 Aug 1;384:314-328. doi: 10.1016/j.neuroscience.2018.05.036. Epub 2018 May 31.
Physical exercise can improve morphological outcomes after ischemic stroke and ameliorate irradiation-induced reduction of hippocampal neurogenesis in rodents, but the mechanisms underlying these effects remain largely unknown. The transcription factor peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) is considered to be one of the central factors responsible for exercise-induced benefits in skeletal muscle, including the release of neurotrophic factors into the circulation. In order to test if PGC-1α overexpression in skeletal muscle could simulate the exercise-induced effects on recovery after cranial irradiation and stroke, we used male adult transgenic mice overexpressing murine PGC-1α under the control of muscle creatinine kinase promoter and subjected them to either whole brain irradiation at a dose of 4 Gy or photothrombotic stroke to the sensory motor cortex. Muscular PGC-1α overexpression did not ameliorate irradiation-induced reduction of newborn BrdU-labeled cells in the dentate gyrus, immature neurons, or newborn mature neurons. In the stroke model, muscular overexpression of PGC-1α resulted in an increased infarct size without any changes in microglia activation or reactive astrocytosis. No difference could be detected in the number of migrating neural progenitor cells from the subventricular zone to the lesioned neocortex or in vascular density of the contralateral neocortex in comparison to wildtype animals. We conclude that forced muscular overexpression of PGC-1α does not have a beneficial effect on hippocampal neurogenesis after irradiation, but rather a detrimental effect on the infarct volume after stroke in mice. This suggests that artificial muscle activation through the PGC-1α pathway is not sufficient to mimic exercise-induced recovery after cranial irradiation and stroke.
体育锻炼可以改善缺血性中风后的形态学结果,并改善辐射诱导的啮齿动物海马神经发生减少,但这些效应的机制在很大程度上仍然未知。过氧化物酶体增殖物激活受体γ共激活因子 1-α(PGC-1α)转录因子被认为是负责运动对骨骼肌益处的核心因素之一,包括将神经营养因子释放到循环中。为了测试骨骼肌中 PGC-1α的过表达是否可以模拟运动对辐射和中风后恢复的诱导作用,我们使用了雄性成年转基因小鼠,这些小鼠在肌肉肌酸激酶启动子的控制下过表达鼠 PGC-1α,并对其进行全脑照射(剂量为 4Gy)或光血栓性感觉运动皮层中风。骨骼肌 PGC-1α的过表达并不能改善辐射诱导的齿状回新生 BrdU 标记细胞、未成熟神经元或新生成熟神经元的减少。在中风模型中,骨骼肌过表达 PGC-1α导致梗死面积增加,而小胶质细胞激活或反应性星形胶质细胞增生没有变化。与野生型动物相比,从侧脑室到损伤新皮质的迁移神经祖细胞的数量或对侧新皮质的血管密度没有差异。我们得出结论,强制骨骼肌过表达 PGC-1α对辐射后海马神经发生没有有益影响,反而对中风后梗死体积有不利影响。这表明,通过 PGC-1α 途径的人工肌肉激活不足以模拟辐射和中风后头部的运动诱导恢复。