Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA.
Hum Mol Genet. 2018 Aug 15;27(16):2863-2873. doi: 10.1093/hmg/ddy200.
Spinocerebellar ataxia type 1 (SCA1) is caused by the expansion of a trinucleotide repeat that encodes a polyglutamine tract in ataxin-1 (ATXN1). The expanded polyglutamine in ATXN1 increases the protein's stability and results in its accumulation and toxicity. Previous studies have demonstrated that decreasing ATXN1 levels ameliorates SCA1 phenotypes and pathology in mouse models. We rationalized that reducing ATXN1 levels through pharmacological inhibition of its modulators could provide a therapeutic avenue for SCA1. Here, through a forward genetic screen in Drosophila we identified, p21-activated kinase 3 (Pak3) as a modulator of ATXN1 levels. Loss-of-function of fly Pak3 or Pak1, whose mammalian homologs belong to Group I of PAK proteins, reduces ATXN1 levels, and accordingly, improves disease pathology in a Drosophila model of SCA1. Knockdown of PAK1 potently reduces ATXN1 levels in mammalian cells independent of the well-characterized S776 phosphorylation site (known to stabilize ATXN1) thus revealing a novel molecular pathway that regulates ATXN1 levels. Furthermore, pharmacological inhibition of PAKs decreases ATXN1 levels in a mouse model of SCA1. To explore the potential of using PAK inhibitors in combination therapy, we combined the pharmacological inhibition of PAK with MSK1, a previously identified modulator of ATXN1, and examined their effects on ATXN1 levels. We found that inhibition of both pathways results in an additive decrease in ATXN1 levels. Together, this study identifies PAK signaling as a distinct molecular pathway that regulates ATXN1 levels and presents a promising opportunity to pursue for developing potential therapeutics for SCA1.
脊髓小脑共济失调 1 型(SCA1)是由编码 ataxin-1(ATXN1)中多聚谷氨酰胺链的三核苷酸重复扩展引起的。ATXN1 中扩展的多聚谷氨酰胺增加了蛋白质的稳定性,导致其积累和毒性。先前的研究表明,降低 ATXN1 水平可改善 SCA1 小鼠模型的表型和病理学。我们推断,通过药理学抑制其调节剂来降低 ATXN1 水平可能为 SCA1 提供一种治疗途径。在这里,我们通过果蝇的正向遗传筛选,鉴定出 p21 激活激酶 3(Pak3)是 ATXN1 水平的调节剂。果蝇 Pak3 或 Pak1 的功能丧失,其哺乳动物同源物属于 PAK 蛋白的第一组,可降低 ATXN1 水平,并相应地改善 SCA1 果蝇模型中的疾病病理学。PAK1 的敲低可有效地降低哺乳动物细胞中的 ATXN1 水平,而不依赖于特征明显的 S776 磷酸化位点(已知可稳定 ATXN1),从而揭示了调节 ATXN1 水平的新分子途径。此外,PAK 的药理学抑制可降低 SCA1 小鼠模型中的 ATXN1 水平。为了探索使用 PAK 抑制剂联合治疗的潜力,我们将 PAK 的药理学抑制与之前鉴定的 ATXN1 调节剂 MSK1 相结合,并检查它们对 ATXN1 水平的影响。我们发现抑制这两条途径可使 ATXN1 水平呈相加性降低。总之,这项研究确定了 PAK 信号作为调节 ATXN1 水平的独特分子途径,并为开发 SCA1 的潜在治疗方法提供了有前途的机会。