Integrative Molecular and Biomedical Science Program, Baylor College of Medicine, Houston, TX, USA.
Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
EMBO J. 2021 Apr 1;40(7):e106106. doi: 10.15252/embj.2020106106. Epub 2021 Mar 11.
A critical question in neurodegeneration is why the accumulation of disease-driving proteins causes selective neuronal loss despite their brain-wide expression. In Spinocerebellar ataxia type 1 (SCA1), accumulation of polyglutamine-expanded Ataxin-1 (ATXN1) causes selective degeneration of cerebellar and brainstem neurons. Previous studies revealed that inhibiting Msk1 reduces phosphorylation of ATXN1 at S776 as well as its levels leading to improved cerebellar function. However, there are no regulators that modulate ATXN1 in the brainstem-the brain region whose pathology is most closely linked to premature death. To identify new regulators of ATXN1, we performed genetic screens and identified a transcription factor-kinase axis (ZBTB7B-RSK3) that regulates ATXN1 levels. Unlike MSK1, RSK3 is highly expressed in the human and mouse brainstems where it regulates Atxn1 by phosphorylating S776. Reducing Rsk3 rescues brainstem-associated pathologies and deficits, and lowering Rsk3 and Msk1 together improves cerebellar and brainstem function in an SCA1 mouse model. Our results demonstrate that selective vulnerability of brain regions in SCA1 is governed by region-specific regulators of ATXN1, and targeting multiple regulators could rescue multiple degenerating brain areas.
神经退行性疾病的一个关键问题是,为什么尽管疾病驱动蛋白在大脑中广泛表达,但它们的积累会导致选择性神经元丧失。在脊髓小脑共济失调 1 型(SCA1)中,聚谷氨酰胺扩展的 Ataxin-1(ATXN1)的积累导致小脑和脑干神经元的选择性退化。先前的研究表明,抑制 Msk1 可减少 ATXN1 在 S776 处的磷酸化及其水平,从而改善小脑功能。然而,在与过早死亡最密切相关的脑区——脑干中,没有调节 ATXN1 的调节剂。为了鉴定 ATXN1 的新调节剂,我们进行了遗传筛选,并鉴定出一个转录因子-激酶轴(ZBTB7B-RSK3),它调节 ATXN1 的水平。与 MSK1 不同,RSK3 在人和小鼠脑干中高度表达,通过磷酸化 S776 来调节 Atxn1。降低 Rsk3 可挽救与脑干相关的病理和缺陷,并且降低 Rsk3 和 Msk1 可共同改善 SCA1 小鼠模型中的小脑和脑干功能。我们的结果表明,SCA1 中脑区的选择性脆弱性受 ATXN1 的区域特异性调节剂控制,靶向多个调节剂可以挽救多个退化的脑区。