School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
Interdisciplinary Graduate School, Nanyang Technological University, Singapore 637371, Singapore.
Curr Biol. 2018 Jun 18;28(12):1882-1895.e7. doi: 10.1016/j.cub.2018.04.045. Epub 2018 May 31.
Profilin functions with formin in actin assembly, a process that regulates multiple aspects of plant development and immune responses. High-level eukaryotes contain multiple isoforms of profilin, formin, and actin, whose partner-specific interactions in actin assembly are not completely understood in plant development and defense responses. To examine the functionally distinct interactions between profilin and formin, we studied all five Arabidopsis profilins and their interactions with formin by using both in vitro biochemical and in vivo cell biology approaches. Unexpectedly, we found a previously undescribed negative regulatory function of AtPRF3 in AtFH1-mediated actin polymerization. The N-terminal 37 residues of AtPRF3 were identified to play a predominant role in inhibiting formin-mediated actin nucleation via their high affinity for the formin polyproline region and their triggering of the oligomerization of AtPRF3. Both in vivo and in vitro mechanistic studies of AtPRF3 revealed a universal mechanism in which the weak interaction between profilin and formin positively regulates actin assembly by ensuring rapid recycling of profilin, whereas profilin oligomerization negatively regulates actin polymerization. Upon recognition of the pathogen-associated molecular pattern, the gene transcription and protein degradation of AtPRF3 are modulated for actin assembly during plant innate immunity. The prf3 Arabidopsis plants show higher sensitivity to the bacterial flagellum peptide in both the plant growth and ROS responses. These findings demonstrate a profilin-mediated actin assembly mechanism underlying the plant immune responses.
丝状肌动蛋白形成蛋白(formin)在肌动蛋白组装中发挥作用,该过程调节植物发育和免疫反应的多个方面。高等真核生物含有多个丝状肌动蛋白形成蛋白和肌动蛋白同工型,但其在植物发育和防御反应中肌动蛋白组装的伴侣特异性相互作用尚未完全了解。为了研究丝状肌动蛋白形成蛋白和肌动蛋白之间功能不同的相互作用,我们使用体外生化和体内细胞生物学方法研究了拟南芥中的所有 5 种丝状肌动蛋白及其与丝状肌动蛋白形成蛋白的相互作用。出乎意料的是,我们发现了 AtPRF3 在 AtFH1 介导的肌动蛋白聚合中的先前未描述的负调节功能。AtPRF3 的 N 端 37 个残基被鉴定为通过与丝状肌动蛋白形成蛋白的多脯氨酸区的高亲和力及其触发 AtPRF3 的寡聚化,发挥在抑制丝状肌动蛋白形成蛋白介导的肌动蛋白成核中的主要作用。AtPRF3 的体内和体外机制研究揭示了一个普遍的机制,即丝状肌动蛋白和肌动蛋白形成蛋白之间的弱相互作用通过确保丝状肌动蛋白的快速循环,从而正向调节肌动蛋白组装,而丝状肌动蛋白的寡聚化则负向调节肌动蛋白聚合。在植物先天免疫过程中,当识别到病原体相关分子模式时,AtPRF3 的基因转录和蛋白降解会被调节以进行肌动蛋白组装。prf3 拟南芥植物在植物生长和 ROS 反应中对细菌鞭毛肽的敏感性更高。这些发现证明了丝状肌动蛋白形成蛋白介导的肌动蛋白组装机制是植物免疫反应的基础。