He Danxia, Li Yuanbao, Ma Qianqian, Han Libo, Tang Dingzhong, Miao Yansong
School of Biological Sciences, Nanyang Technological University, 637551, Singapore.
State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Plant Cell. 2025 May 9;37(5). doi: 10.1093/plcell/koaf097.
The polarized actin cable from the Spitzenkörper at the hyphal tip fuels filamentous growth in diverse biphasic fungal pathogens. This multicomponent complex, featuring the actin nucleator Bni1 and its associated actin regulator, initiates actin polymerization, guiding biphasic fungal growth and host infection. How dynamic assembly of the Spitzenkörper and actin cable is achieved to support filamentous fungi that undergo multistage morphogenesis for host invasion remains unclear. These fungi include Magnaporthe oryzae (M. oryzae), which undergoes a multistage morphological transition during host plant infection. Here, we showed that the M. oryzae scaffolder protein MoSpa2 remodels actin cable networks in space and time by assembling the polarisome complex via phase separation, thereby supporting polarized growth in M. oryzae. Via its N-terminal intrinsically disordered regions, MoSpa2 first stimulates actin cable assembly through multivalent interactions with the MoBni1 nucleator, after which it creates polarized actin cable bundles by association with F-actin and a concurrent inhibition of cofilin-mediated F-actin depolymerization. MoSPA2 mutants exhibit impaired hyphal growth and a reduced ability to infect host plants, underling the significance of this scaffolder. Overall, this work elucidates the fundamental mechanisms underlying fungal morphogenesis, offering the potential for targeted interventions in pathogenesis.
来自菌丝顶端Spitzenkörper的极化肌动蛋白电缆为多种双相真菌病原体中的丝状生长提供动力。这个多组分复合体以肌动蛋白成核剂Bni1及其相关的肌动蛋白调节剂为特征,启动肌动蛋白聚合,引导双相真菌生长和宿主感染。目前尚不清楚Spitzenkörper和肌动蛋白电缆的动态组装是如何实现的,以支持经历多阶段形态发生以侵入宿主的丝状真菌。这些真菌包括稻瘟病菌(M. oryzae),它在宿主植物感染期间经历多阶段的形态转变。在这里,我们表明,稻瘟病菌支架蛋白MoSpa2通过相分离组装极化体复合体,在空间和时间上重塑肌动蛋白电缆网络,从而支持稻瘟病菌的极化生长。通过其N端内在无序区域,MoSpa2首先通过与MoBni1成核剂的多价相互作用刺激肌动蛋白电缆组装,之后它通过与F-肌动蛋白结合并同时抑制cofilin介导的F-肌动蛋白解聚来形成极化的肌动蛋白电缆束。MoSPA2突变体表现出菌丝生长受损和感染宿主植物的能力降低,这突出了这种支架蛋白的重要性。总的来说,这项工作阐明了真菌形态发生的基本机制,为发病机制的靶向干预提供了潜力。