Suppr超能文献

具有相分离特性的稻瘟病菌MoSpa2复合物为植物侵染组建肌动蛋白成核中心。

The phase-separating Magnaporthe oryzae MoSpa2 complex organizes actin nucleation centers for plant infection.

作者信息

He Danxia, Li Yuanbao, Ma Qianqian, Han Libo, Tang Dingzhong, Miao Yansong

机构信息

School of Biological Sciences, Nanyang Technological University, 637551, Singapore.

State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

出版信息

Plant Cell. 2025 May 9;37(5). doi: 10.1093/plcell/koaf097.

Abstract

The polarized actin cable from the Spitzenkörper at the hyphal tip fuels filamentous growth in diverse biphasic fungal pathogens. This multicomponent complex, featuring the actin nucleator Bni1 and its associated actin regulator, initiates actin polymerization, guiding biphasic fungal growth and host infection. How dynamic assembly of the Spitzenkörper and actin cable is achieved to support filamentous fungi that undergo multistage morphogenesis for host invasion remains unclear. These fungi include Magnaporthe oryzae (M. oryzae), which undergoes a multistage morphological transition during host plant infection. Here, we showed that the M. oryzae scaffolder protein MoSpa2 remodels actin cable networks in space and time by assembling the polarisome complex via phase separation, thereby supporting polarized growth in M. oryzae. Via its N-terminal intrinsically disordered regions, MoSpa2 first stimulates actin cable assembly through multivalent interactions with the MoBni1 nucleator, after which it creates polarized actin cable bundles by association with F-actin and a concurrent inhibition of cofilin-mediated F-actin depolymerization. MoSPA2 mutants exhibit impaired hyphal growth and a reduced ability to infect host plants, underling the significance of this scaffolder. Overall, this work elucidates the fundamental mechanisms underlying fungal morphogenesis, offering the potential for targeted interventions in pathogenesis.

摘要

来自菌丝顶端Spitzenkörper的极化肌动蛋白电缆为多种双相真菌病原体中的丝状生长提供动力。这个多组分复合体以肌动蛋白成核剂Bni1及其相关的肌动蛋白调节剂为特征,启动肌动蛋白聚合,引导双相真菌生长和宿主感染。目前尚不清楚Spitzenkörper和肌动蛋白电缆的动态组装是如何实现的,以支持经历多阶段形态发生以侵入宿主的丝状真菌。这些真菌包括稻瘟病菌(M. oryzae),它在宿主植物感染期间经历多阶段的形态转变。在这里,我们表明,稻瘟病菌支架蛋白MoSpa2通过相分离组装极化体复合体,在空间和时间上重塑肌动蛋白电缆网络,从而支持稻瘟病菌的极化生长。通过其N端内在无序区域,MoSpa2首先通过与MoBni1成核剂的多价相互作用刺激肌动蛋白电缆组装,之后它通过与F-肌动蛋白结合并同时抑制cofilin介导的F-肌动蛋白解聚来形成极化的肌动蛋白电缆束。MoSPA2突变体表现出菌丝生长受损和感染宿主植物的能力降低,这突出了这种支架蛋白的重要性。总的来说,这项工作阐明了真菌形态发生的基本机制,为发病机制的靶向干预提供了潜力。

相似文献

2
Magnaporthe oryzae fimbrin organizes actin networks in the hyphal tip during polar growth and pathogenesis.
PLoS Pathog. 2020 Mar 16;16(3):e1008437. doi: 10.1371/journal.ppat.1008437. eCollection 2020 Mar.
3
Recycling of Trans-Golgi SNAREs Promotes Apoplastic Effector Secretion for Effective Host Invasion in Magnaporthe oryzae.
Plant Cell Environ. 2025 Aug;48(8):6047-6065. doi: 10.1111/pce.15582. Epub 2025 Apr 29.
4
6
The CHY-type zinc finger protein MoChy1 is involved in polarized growth, conidiation, autophagy and pathogenicity of Magnaporthe oryzae.
Int J Biol Macromol. 2024 May;268(Pt 1):131867. doi: 10.1016/j.ijbiomac.2024.131867. Epub 2024 Apr 24.
9
OsMbl1 Counteracts OsGdsl1-Mediated Rice Blast Susceptibility by Inhibiting Its Lipase Activity.
Plant Cell Environ. 2025 Aug;48(8):5650-5663. doi: 10.1111/pce.15552. Epub 2025 Apr 15.
10
Epigenetic modulation of fungal pathogens: a focus on .
Front Microbiol. 2024 Oct 28;15:1463987. doi: 10.3389/fmicb.2024.1463987. eCollection 2024.

本文引用的文献

1
Spa2 remodels ADP-actin via molecular condensation under glucose starvation.
Nat Commun. 2024 May 27;15(1):4491. doi: 10.1038/s41467-024-48863-4.
2
MolPhase, an advanced prediction algorithm for protein phase separation.
EMBO J. 2024 May;43(9):1898-1918. doi: 10.1038/s44318-024-00090-9. Epub 2024 Apr 2.
3
The intrinsically disordered region of coronins fine-tunes oligomerization and actin polymerization.
Cell Rep. 2023 Jun 27;42(6):112594. doi: 10.1016/j.celrep.2023.112594. Epub 2023 Jun 1.
4
Phase separation in fungi.
Nat Microbiol. 2023 Mar;8(3):375-386. doi: 10.1038/s41564-022-01314-6. Epub 2023 Feb 13.
5
An actin remodeling role for Arabidopsis processing bodies revealed by their proximity interactome.
EMBO J. 2023 May 2;42(9):e111885. doi: 10.15252/embj.2022111885. Epub 2023 Feb 6.
6
Condensation of the fusion focus by the intrinsically disordered region of the formin Fus1 is essential for cell-cell fusion.
Curr Biol. 2022 Nov 7;32(21):4752-4761.e10. doi: 10.1016/j.cub.2022.09.026. Epub 2022 Oct 5.
9
Molecular condensation and mechanoregulation of plant class I formin, an integrin-like actin nucleator.
FEBS J. 2023 Jul;290(13):3336-3354. doi: 10.1111/febs.16571. Epub 2022 Jul 26.
10
An actin mechanostat ensures hyphal tip sharpness in to achieve host penetration.
Sci Adv. 2022 Jun 10;8(23):eabo0875. doi: 10.1126/sciadv.abo0875.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验