Suppr超能文献

基于 ECG 轨迹的室性早搏检测的贝叶斯分类模型。

Bayesian Classification Models for Premature Ventricular Contraction Detection on ECG Traces.

机构信息

Facultad de Ingenieria, Universidad Autonoma de Baja California, Mexicali, BC, Mexico.

Instituto de Ingenieria, Universidad Autonoma de Baja California, Mexicali, BC, Mexico.

出版信息

J Healthc Eng. 2018 May 10;2018:2694768. doi: 10.1155/2018/2694768. eCollection 2018.

Abstract

According to the American Heart Association, in its latest commission about Ventricular Arrhythmias and Sudden Death 2006, the epidemiology of the ventricular arrhythmias ranges from a series of risk descriptors and clinical markers that go from ventricular premature complexes and nonsustained ventricular tachycardia to sudden cardiac death due to ventricular tachycardia in patients with or without clinical history. The premature ventricular complexes (PVCs) are known to be associated with malignant ventricular arrhythmias and sudden cardiac death (SCD) cases. Detecting this kind of arrhythmia has been crucial in clinical applications. The electrocardiogram (ECG) is a clinical test used to measure the heart electrical activity for inferences and diagnosis. Analyzing large ECG traces from several thousands of beats has brought the necessity to develop mathematical models that can automatically make assumptions about the heart condition. In this work, 80 different features from 108,653 ECG classified beats of the gold-standard MIT-BIH database were extracted in order to classify the Normal, PVC, and other kind of ECG beats. Three well-known Bayesian classification algorithms were trained and tested using these extracted features. Experimental results show that the F1 scores for each class were above 0.95, giving almost the perfect value for the PVC class. This gave us a promising path in the development of automated mechanisms for the detection of PVC complexes.

摘要

根据美国心脏协会(American Heart Association)在其 2006 年最新发布的《室性心律失常与心源性猝死委员会报告》,室性心律失常的流行病学范围从一系列风险描述符和临床标志物,包括室性期前收缩和非持续性室性心动过速,一直到伴有或不伴有临床病史的室性心动过速导致的心脏性猝死。已知室性期前收缩(PVC)与恶性室性心律失常和心脏性猝死(SCD)病例有关。检测这种心律失常在临床应用中至关重要。心电图(ECG)是一种用于测量心脏电活动以进行推断和诊断的临床检查。分析来自数千个心跳的大型 ECG 迹线,需要开发能够自动对心脏状况做出假设的数学模型。在这项工作中,从金标准 MIT-BIH 数据库的 108653 个分类 ECG 心跳中提取了 80 个不同的特征,以对正常、PVC 和其他类型的 ECG 心跳进行分类。使用这些提取的特征对三种著名的贝叶斯分类算法进行了训练和测试。实验结果表明,每个类别的 F1 分数均高于 0.95,PVC 类别的值几乎达到了完美。这为开发 PVC 复合体自动检测机制提供了一条有希望的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ad4/5971262/41e4d99a3a28/JHE2018-2694768.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验