Suppr超能文献

基于深度学习的室性期前收缩识别。

Premature Ventricular Contraction Recognition Based on a Deep Learning Approach.

机构信息

Department of Engineering, Islamic Azad University Tehran North Branch, Tehran, Iran.

Department of Electrical and Computer Engineering, Islamic Azad University Tehran North Branch, Tehran, Iran.

出版信息

J Healthc Eng. 2022 Mar 26;2022:1450723. doi: 10.1155/2022/1450723. eCollection 2022.

Abstract

Electrocardiogram signal (ECG) is considered a significant biological signal employed to diagnose heart diseases. An ECG signal allows the demonstration of the cyclical contraction and relaxation of human heart muscles. This signal is a primary and noninvasive tool employed to recognize the actual life threat related to the heart. Abnormal ECG heartbeat and arrhythmia are the possible symptoms of severe heart diseases that can lead to death. Premature ventricular contraction (PVC) is one of the most common arrhythmias which begins from the lower chamber of the heart and can cause cardiac arrest, palpitation, and other symptoms affecting all activities of a patient. Nowadays, computer-assisted techniques reduce doctors' burden to assess heart arrhythmia and heart disease automatically. In this study, we propose a PVC recognition based on a deep learning approach using the MIT-BIH arrhythmia database. Firstly, 10 heartbeat and statistical features including three morphological features (RS amplitude, QR amplitude, and QRS width) and seven statistical features are computed for each signal. The extraction process of these features is conducted for 20 s of ECG data that create a feature vector. Next, these features are fed into a convolutional neural network (CNN) to find unique patterns and classify them more effectively. The obtained results prove that our pipeline improves the diagnosis performance more effectively.

摘要

心电图信号 (ECG) 被认为是用于诊断心脏病的重要生物信号。ECG 信号可以显示人心肌的周期性收缩和舒张。该信号是一种用于识别与心脏相关的实际生命威胁的主要非侵入性工具。异常的心电图心跳和心律失常是严重心脏病的可能症状,可能导致死亡。室性早搏 (PVC) 是最常见的心律失常之一,它始于心脏的下腔室,可导致心脏骤停、心悸和其他影响患者所有活动的症状。如今,计算机辅助技术可帮助医生自动评估心律失常和心脏病,减轻负担。在这项研究中,我们提出了一种基于深度学习的 PVC 识别方法,使用 MIT-BIH 心律失常数据库。首先,为每个信号计算 10 个心跳和统计特征,包括三个形态特征(RS 幅度、QR 幅度和 QRS 宽度)和七个统计特征。这些特征的提取过程是对 20 秒的 ECG 数据进行的,这些数据创建了一个特征向量。接下来,将这些特征输入卷积神经网络 (CNN) 以找到独特的模式并更有效地对其进行分类。获得的结果证明,我们的管道可以更有效地提高诊断性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验