Suppr超能文献

基于小波包变换的右手和足部运动想象任务分类

[Task Classifcation of Right-hand and Foot Motion Imagery Based on Wavelet Packet Transform].

作者信息

Cai Miao, Hu Ping

机构信息

Department of Integrated Chinese and Western Medicine, Xi'an Children's Hospital, Xi'an, 710003.

出版信息

Zhongguo Yi Liao Qi Xie Za Zhi. 2017 May 30;41(3):177-180. doi: 10.3969/j.issn.1671-7104.2017.03.006.

Abstract

Brain-computer interface (BCI) provides a new choice for people who lose communication ability, so the recognition of EEG has been paid attention. In this paper, wavelet packet transform (WPT) and transfer learning (TL) were used to classify right-hand and foot motion imagery tasks. Firstly, based on analyzing the channels and frequency bands closely related to event-related desynchronization (ERD), the EEG signals are decomposed by WPT. Then the relevant nodes were selected to calculate wavelet packet energy. Finally, TL was used to classify the BCI competition Ⅲ data IVa. The ideal classification result was obtained. The results show that the method is simple and effective, and it is valuable for online application of BCI.

摘要

脑机接口(BCI)为失去沟通能力的人提供了一种新的选择,因此脑电图(EEG)的识别受到了关注。本文采用小波包变换(WPT)和迁移学习(TL)对右手和足部运动想象任务进行分类。首先,在分析与事件相关去同步化(ERD)密切相关的通道和频段的基础上,利用WPT对EEG信号进行分解。然后选择相关节点计算小波包能量。最后,利用TL对BCI竞赛Ⅲ数据IVa进行分类,获得了理想的分类结果。结果表明,该方法简单有效,对BCI的在线应用具有重要价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验