Suppr超能文献

基于灵活分析小波变换的脑机接口应用中运动想象任务分类方法。

A flexible analytic wavelet transform based approach for motor-imagery tasks classification in BCI applications.

机构信息

Discipline of Electronics and Communication Engineering, PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur 452005, India.

Institute for Sustainable Industries & Liveable Cities, Victoria University, Melbourne, Australia.

出版信息

Comput Methods Programs Biomed. 2020 Apr;187:105325. doi: 10.1016/j.cmpb.2020.105325. Epub 2020 Jan 18.

Abstract

BACKGROUND AND OBJECTIVE

Motor Imagery (MI) based Brain-Computer-Interface (BCI) is a rising support system that can assist disabled people to communicate with the real world, without any external help. It serves as an alternative communication channel between the user and computer. Electroencephalogram (EEG) recordings prove to be an appropriate choice for imaging MI tasks in a BCI system as it provides a non-invasive way for completing the task. The reliability of a BCI system confides on the efficiency of the assessment of different MI tasks.

METHODS

The present work proposes a new approach for the classification of distinct MI tasks based on EEG signals using the flexible analytic wavelet transform (FAWT) technique. The FAWT decomposes the EEG signal into sub-bands and temporal moment-based features are extracted from the sub-bands. Feature normalization is applied to minimize the bias nature of classifier. The FAWT-based features are utilized as inputs to multiple classifiers. Ensemble learning method based Subspace k-Nearest Neighbour (kNN) classifier is established as the best and robust classifier for the distinction of the right hand (RH) and right foot (RF) MI tasks.

RESULTS

The sub-band (SB) wise features are tested on multiple classifiers and best performance parameters are obtained using the ensemble method based subspace kNN classifier. The best results of parameters are obtained for fourth SB as accuracy 99.33%, sensitivity 99%, specificity 99.6%, F1-Score 0.9925, and kappa value 0.9865. The other sub-bands are also attained significant results using subspace KNN classifier.

CONCLUSIONS

The proposed work explores the utility of FAWT based features for the classification of RH and RF MI tasks EEG signals. The suggested work highlights the effectiveness of multiple classifiers for classification MI-tasks. The proposed method shows better performance in comparison to state-of-arts methods. Thus, the potential to implement a BCI system for controlling wheelchairs, robotic arms, etc.

摘要

背景与目的

基于运动想象(MI)的脑机接口(BCI)是一种新兴的支持系统,可以帮助残疾人与现实世界进行交流,而无需任何外部帮助。它是用户与计算机之间的一种替代通信通道。脑电图(EEG)记录被证明是 BCI 系统中进行 MI 任务成像的合适选择,因为它为完成任务提供了一种非侵入性的方式。BCI 系统的可靠性取决于对不同 MI 任务评估的效率。

方法

本工作提出了一种基于 EEG 信号的基于灵活分析小波变换(FAWT)技术的不同 MI 任务分类的新方法。FAWT 将 EEG 信号分解为子带,并从子带中提取基于时间矩的特征。特征归一化用于最小化分类器的偏差性质。基于 FAWT 的特征用作多个分类器的输入。基于集成学习方法的子空间 k-最近邻(kNN)分类器作为区分右手(RH)和右脚(RF)MI 任务的最佳和稳健分类器建立。

结果

子带(SB)明智的特征在多个分类器上进行了测试,并使用基于集成方法的子空间 kNN 分类器获得了最佳性能参数。使用子空间 KNN 分类器获得了最佳的参数结果第四 SB 的准确率为 99.33%,灵敏度为 99%,特异性为 99.6%,F1-得分为 0.9925,kappa 值为 0.9865。其他子带也使用子空间 KNN 分类器获得了显著的结果。

结论

本工作探讨了基于 FAWT 的特征在 RH 和 RF MI 任务 EEG 信号分类中的应用。所提出的工作强调了多个分类器在分类 MI 任务中的有效性。与现有的方法相比,所提出的方法表现出更好的性能。因此,有可能为控制轮椅、机械臂等实施 BCI 系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验