Frisenda Riccardo, Stefani Davide, van der Zant Herre S J
Kavli Institute of Nanoscience , Delft University of Technology , Delft 2600 GA , The Netherlands.
Instituto Madrileño de Estudios Avanzados de Nanociencia (IMDEA-nanociencia) , E-28049 Madrid , Spain.
Acc Chem Res. 2018 Jun 19;51(6):1359-1367. doi: 10.1021/acs.accounts.7b00493. Epub 2018 Jun 4.
This Account provides an overview of our recent efforts to unravel charge transport characteristics of a metal-molecule-metal junction containing an individual π-conjugated molecule. The model system of our choice is an oligo(phenylene-ethynylene) consisting of three rings, in short OPE3, which represents a paradigmatic model system for molecular-scale electronics. Members of the OPE family are among the most studied in the field thanks to their simple and rigid structure, the possibility of chemically functionalizing them, and their clear transport characteristics. When investigating charge transport in molecular systems, two general directions can be distinguished: one in which assemblies composed of many molecules contacted in parallel are studied, while in the other a single molecule is investigated at a time. In the former approach, molecule-molecule interactions and ensemble-averaged quantities may play a role, thereby introducing broadening of spectral features and hindering the study of the behavior of individual molecules making it more difficult to deconvolute local and intrinsic molecular effects from collective ones. In contrast, single-molecule experiments directly probe individual molecular features and, when they are repeated many times, allow build up of a statistical representation of the changes introduced by, e.g., different junction configurations. Especially in recent years, experimental techniques have advanced such that now large sets of individual events can be measured and analyzed with statistical tools. To study individual single-molecule junctions, we use the break junction technique, in which two sharp movable electrodes are formed by breaking a thin metallic wire and used to contact a single or few molecules. By probing thousands of single-molecule junctions in different conditions, we show that their creation involves independent events justifying the statistical tools that are used. By combining room- and low-temperature data, we show that the dominant transport mechanism for electrons through the OPE3 molecule is off-resonant tunneling. The simplest model capturing transport details in this case is a single-level model characterized by three parameters: the level alignment of the frontier orbital with the Fermi energy of the leads and the electronic couplings to the leads. Variations in these parameters give a broad distribution (1 order of magnitude) in the observed conductance values, indicating that at the microscopic level both the hybridization with the metallic electrodes and the molecular electronic configuration can fluctuate. The low-temperature data show that these variations are due to abrupt changes in the configuration of the molecule in the junction leading to changes in either one of these parameters or both at the same time. The complementary information gained from different experiments is needed to build up a consistent and extended picture of the variability of molecular configurations, omnipresent in single-molecule studies. Knowledge of this variability can help one to better understand the behavior of molecules at the atomic level and at the metal-molecule interface in particular.
本综述介绍了我们近期为揭示包含单个π共轭分子的金属-分子-金属结的电荷传输特性所做的努力。我们选择的模型体系是由三个环组成的寡聚(亚苯基乙炔),简称为OPE3,它代表了分子尺度电子学的一个典型模型体系。由于其结构简单且刚性、可进行化学功能化修饰以及具有清晰的传输特性,OPE家族的成员是该领域研究最多的之一。在研究分子体系中的电荷传输时,可以区分两个总体方向:一个是研究由许多分子并联接触组成的组件,另一个是一次研究单个分子。在前一种方法中,分子间相互作用和系综平均量可能起作用,从而导致光谱特征变宽,并阻碍对单个分子行为的研究,使得更难以从集体效应中解卷积出局部和内在的分子效应。相比之下,单分子实验直接探测单个分子特征,并且当多次重复时,可以建立例如由不同结构型引入的变化的统计表示。特别是近年来,实验技术有了很大进步,现在可以用统计工具测量和分析大量的单个事件。为了研究单个单分子结,我们使用断结技术,其中通过折断一根细金属丝形成两个尖锐的可移动电极,并用于接触单个或少数几个分子。通过在不同条件下探测数千个单分子结,我们表明它们的形成涉及独立事件,这证明了所使用的统计工具的合理性。通过结合室温和低温数据,我们表明电子通过OPE3分子的主要传输机制是非共振隧穿。在这种情况下,捕捉传输细节的最简单模型是一个单能级模型,其特征由三个参数表征:前沿轨道与引线费米能级的能级对齐以及与引线的电子耦合。这些参数的变化在观察到的电导值中给出了一个宽分布(1个数量级),表明在微观层面,与金属电极的杂化和分子电子构型都可能发生波动。低温数据表明,这些变化是由于结中分子构型的突然变化导致这些参数中的一个或两个同时发生变化。需要从不同实验中获得的互补信息来构建分子构型变异性的一致且扩展的图景,这在单分子研究中无处不在。了解这种变异性有助于人们更好地理解分子在原子水平上的行为,特别是在金属-分子界面处的行为。