Yamane Junko, Aburatani Sachiyo, Imanishi Satoshi, Akanuma Hiromi, Nagano Reiko, Kato Tsuyoshi, Sone Hideko, Ohsako Seiichiroh, Fujibuchi Wataru
Kyoto University.
The University of Tokyo.
Yakugaku Zasshi. 2018;138(6):815-822. doi: 10.1248/yakushi.17-00213-2.
Toxicity prediction based on stem cells and tissue derived from stem cells plays a very important role in the fields of biomedicine and pharmacology. Here we report on qRT-PCR data obtained by exposing 20 compounds to human embryonic stem (ES) cells. The data are intended to improve toxicity prediction, per category, of various compounds through the use of support vector machines, and by applying gene networks. The accuracy of our system was 97.5-100% in three toxicity categories: neurotoxins (NTs), genotoxic carcinogens (GCs), and non-genotoxic carcinogens (NGCs). We predicted that two uncategorized compounds (bisphenol-A and permethrin) should be classified as follows: bisphenol-A as a non-genotoxic carcinogen, and permethrin as a neurotoxin. These predictions are supported by recent reports, and as such constitute a good outcome. Our results include two important features: 1) The accuracy of prediction was higher when machine learning was carried out using gene networks and activity, rather than the normal quantitative structure-activity relationship (QSAR); and 2) By using undifferentiated ES cells, the late effect of chemical substances was predicted. From these results, we succeeded in constructing a highly effective and highly accurate system to predict the toxicity of compounds using stem cells.
基于干细胞及源自干细胞的组织进行毒性预测,在生物医药和药理学领域发挥着非常重要的作用。在此,我们报告了将20种化合物作用于人类胚胎干细胞(ES细胞)后获得的qRT-PCR数据。这些数据旨在通过使用支持向量机并应用基因网络,按类别提高对各种化合物的毒性预测。我们的系统在神经毒素(NTs)、遗传毒性致癌物(GCs)和非遗传毒性致癌物(NGCs)这三种毒性类别中的准确率为97.5%至100%。我们预测两种未分类的化合物(双酚A和氯菊酯)应分类如下:双酚A为非遗传毒性致癌物,氯菊酯为神经毒素。这些预测得到了近期报告的支持,因此是一个良好的结果。我们的结果包括两个重要特征:1)使用基因网络和活性进行机器学习时,预测准确率高于正常的定量构效关系(QSAR);2)通过使用未分化的ES细胞,预测了化学物质的后期效应。基于这些结果,我们成功构建了一个利用干细胞预测化合物毒性的高效且高精度系统。