Suppr超能文献

基于干细胞的发育化学毒性预测方法

Stem Cell-Based Methods to Predict Developmental Chemical Toxicity.

作者信息

Takahashi Hiroki, Qin Xian-Yang, Sone Hideko, Fujibuchi Wataru

机构信息

Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.

Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Ibaraki, Japan.

出版信息

Methods Mol Biol. 2018;1800:475-483. doi: 10.1007/978-1-4939-7899-1_21.

Abstract

Human pluripotent stem cells such as embryonic stem (ES) and induced pluripotent stem (iPS) cells, combined with sophisticated bioinformatics methods, are powerful tools to predict developmental chemical toxicity. Because cell differentiation is not necessary, these cells can facilitate cost-effective assays, thus providing a practical system for the toxicity assessment of various types of chemicals. Here we describe how to apply machine learning techniques to different types of data, such as qRT-PCRs, gene networks, and molecular descriptors, for toxic chemicals, as well as how to integrate these data to predict toxicity categories. Interestingly, our results using 20 chemical data for neurotoxins (NTs), genotoxic carcinogens (GCs), and nongenotoxic carcinogens (NGCs) demonstrated that the highest and most robust prediction performance was obtained by using gene networks as the input. We also observed that qRT-PCR and molecular descriptors tend to contribute to specific toxicity categories.

摘要

人类多能干细胞,如胚胎干细胞(ES)和诱导多能干细胞(iPS),与先进的生物信息学方法相结合,是预测发育性化学毒性的有力工具。由于不需要细胞分化,这些细胞可以促进具有成本效益的检测,从而为各种化学品的毒性评估提供一个实用的系统。在这里,我们描述了如何将机器学习技术应用于不同类型的数据,如qRT-PCR、基因网络和分子描述符,以用于有毒化学品,以及如何整合这些数据来预测毒性类别。有趣的是,我们使用20种神经毒素(NTs)、遗传毒性致癌物(GCs)和非遗传毒性致癌物(NGCs)的化学数据所得到的结果表明,以基因网络作为输入可获得最高且最稳健的预测性能。我们还观察到,qRT-PCR和分子描述符往往对特定的毒性类别有贡献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验