Raschmanová Hana, Paulová Leona, Branská Barbora, Knejzlík Zdeněk, Melzoch Karel, Kovar Karin
Department of Biotechnology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic.
Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences (ZHAW), Grüentalstrasse 14, 8820, Wädenswil, Switzerland.
Folia Microbiol (Praha). 2018 Nov;63(6):773-787. doi: 10.1007/s12223-018-0619-y. Epub 2018 Jun 5.
Pharmaceutical grade trypsin is in ever-increasing demand for medical and industrial applications. Improving the efficiency of existing biotechnological manufacturing processes is therefore paramount. When produced biotechnologically, trypsinogen-the inactive precursor of trypsin-is advantageous, since active trypsin would impair cell viability. To study factors affecting cell physiology and the production of trypsinogen in fed-batch cultures, we built a fusion protein of porcine trypsinogen and enhanced green fluorescent protein (EGFP) in Pichia pastoris. The experiments were performed with two different pH values (5.0 and 5.9) and two constant specific growth rates (0.02 and 0.04 1/h), maintained using exponential addition of methanol. All the productivity data presented rely on an active determination of trypsin obtained by proteolysis of the trypsinogen produced. The pH of the medium did not affect cell growth, but significantly influenced specific production of trypsinogen: A 1.7-fold higher concentration of trypsinogen was achieved at pH 5.9 (64 mg/L at 0.02 1/h) compared to pH 5.0. EGFP was primarily used to facilitate detection of intracellular protein over the biosynthetic time course. Using flow cytometry with fluorescence detection, cell disruption was avoided, and protein extraction and purification prior to analysis were unnecessary. However, Western blot and SDS-PAGE showed that cleavage of EGFP-trypsinogen fusion protein occurred, probably caused by Pichia-endogenous proteases. The fluorescence analysis did therefore not accurately represent the actual trypsinogen concentration. However, we gained new experimentally-relevant insights, which can be used to avoid misinterpretation of tracking and quantifying as well as online-monitoring of proteins with the frequently used fluorescent tags.
医药级胰蛋白酶在医疗和工业应用中的需求日益增长。因此,提高现有生物技术制造工艺的效率至关重要。当通过生物技术生产时,胰蛋白酶原(胰蛋白酶的无活性前体)具有优势,因为活性胰蛋白酶会损害细胞活力。为了研究影响补料分批培养中细胞生理学和胰蛋白酶原产生的因素,我们在毕赤酵母中构建了猪胰蛋白酶原与增强型绿色荧光蛋白(EGFP)的融合蛋白。实验在两种不同的pH值(5.0和5.9)以及两种恒定的比生长速率(0.02和0.04 1/h)下进行,通过甲醇的指数添加来维持。所呈现的所有生产力数据均依赖于对通过所产生的胰蛋白酶原的蛋白水解获得的活性胰蛋白酶的测定。培养基的pH值不影响细胞生长,但显著影响胰蛋白酶原的比产量:与pH 5.0相比,在pH 5.9时(0.02 1/h时为64 mg/L)胰蛋白酶原浓度高出1.7倍。EGFP主要用于在生物合成时间进程中促进细胞内蛋白质的检测。使用带有荧光检测的流式细胞术,避免了细胞破碎,并且在分析之前无需进行蛋白质提取和纯化。然而,蛋白质免疫印迹和十二烷基硫酸钠 - 聚丙烯酰胺凝胶电泳表明,EGFP - 胰蛋白酶原融合蛋白发生了裂解,可能是由毕赤酵母内源性蛋白酶引起的。因此,荧光分析不能准确代表实际的胰蛋白酶原浓度。然而,我们获得了新的与实验相关的见解,可用于避免对使用常用荧光标签进行蛋白质追踪、定量以及在线监测时的误解。