State Key Laboratory of Molecular Engineering of Polymer and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
Nanoscale. 2018 Jun 14;10(23):11196-11204. doi: 10.1039/c8nr02519c.
The self-assembly of colloidal nanoparticles (NPs) mediated by block copolymers (BCPs) is an efficient way for fabricating nanocomposite superstructures with precise geometric control. Here we report a generalized liquid-air interfacial strategy by exploiting the versatility in tuning the specific affinities between the grafted polymeric ligands and BCPs, enabling the circular assembly of NPs on a liquid surface to afford unique ring-like superstructures. Fe3O4 NPs act as the model system; however, CoFe2O4 and Au NPs are also demonstrated using the proposed assembly method. Functionalizing NPs with a specific polymeric ligand is the key to achieve the circular assembly of NPs, while both the subphase and the solvent annealing temperature have profound influence on the microphase separation behaviors of BCPs and therefore the morphology of the resulting NP assemblies. Moreover, the co-assembly of two types of NPs grafted with distinct polymeric ligands enables unprecendented heterogeneous concentric rings, with each ring consisting of one type of NP.
通过嵌段共聚物(BCPs)介导的胶体纳米粒子(NPs)的自组装是一种制造具有精确几何控制的纳米复合超结构的有效方法。在这里,我们通过利用接枝聚合物配体与 BCPs 之间特定亲和力的可调节性,报告了一种通用的液-气界面策略,从而可以在液体表面上实现 NPs 的圆形组装,得到独特的环状超结构。Fe3O4 NPs 被用作模型体系;然而,还使用所提出的组装方法证明了 CoFe2O4 和 Au NPs 的情况。用特定的聚合物配体功能化 NPs 是实现 NPs 圆形组装的关键,而亚相和溶剂退火温度对 BCPs 的微相分离行为以及因此对所得 NP 组装体的形态有深远的影响。此外,两种类型的 NPs 与不同的聚合物配体的共组装能够实现前所未有的异质同心环,每个环由一种类型的 NP 组成。