Huang Ting, Liu Zaichun, Yu Feng, Wang Faxing, Li Dongqi, Fu Lijun, Chen Yuhui, Wang Hongxia, Xie Qingji, Yao Shouzhuo, Wu Yuping
Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
School of Energy Science and Engineering & Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, Jiangsu Province, China.
ACS Appl Mater Interfaces. 2020 Nov 25;12(47):52635-52642. doi: 10.1021/acsami.0c14611. Epub 2020 Nov 13.
Sodium (Na)-ion capacitors possess higher energy density than supercapacitors and higher power density than Na-ion batteries. However, kinetic mismatches between fast capacitive charge storage on the cathode and sluggish battery-type reactions on the anode lead to a poor charge/discharge rate capability and insufficient power output of Na-ion capacitors. Thus, developing suitable anode materials for Na-ion capacitors is urgently desirable. This work demonstrates an electrochemically exfoliated graphite (EEG) anode with enhanced capacitive charge storage, greatly boosting the Na-ion reaction kinetics of co-intercalation. The EEG anode shows a high reversible capacity of 109 mAh g and maintains a good capacity retention of 90% after 1000 cycles. The assembled Na-ion capacitor using the EEG anode can finish the charge/discharge process in less than 10 s, which achieves an ultrahigh power density of 17,500 W kg with an energy density of 17 Wh kg. The high capacitive contributions at both the anode and cathode contribute to the fast rate capability and high power output of the fabricated Na-ion capacitors. This work will promote the development of ultrafast charging sodium-ion storage devices.
钠离子电容器具有比超级电容器更高的能量密度和比钠离子电池更高的功率密度。然而,阴极上快速电容性电荷存储与阳极上缓慢的电池型反应之间的动力学不匹配导致钠离子电容器的充/放电速率性能较差且功率输出不足。因此,迫切需要开发适用于钠离子电容器的阳极材料。这项工作展示了一种具有增强电容性电荷存储能力的电化学剥离石墨(EEG)阳极,极大地促进了共嵌入的钠离子反应动力学。EEG阳极显示出109 mAh g的高可逆容量,并且在1000次循环后保持90%的良好容量保持率。使用EEG阳极组装的钠离子电容器能够在不到10秒内完成充/放电过程,实现了17500 W kg的超高功率密度和17 Wh kg的能量密度。阳极和阴极的高电容贡献有助于所制备的钠离子电容器的快速速率性能和高功率输出。这项工作将推动超快充电钠离子存储设备的发展。