Suppr超能文献

空间分辨热力学积分:计算稠密流体化学势的有效方法。

Spatially Resolved Thermodynamic Integration: An Efficient Method To Compute Chemical Potentials of Dense Fluids.

机构信息

Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany.

Physics Department , University of Trento , via Sommarive 14 Povo , Trento 38123 , Italy.

出版信息

J Chem Theory Comput. 2018 Jul 10;14(7):3409-3417. doi: 10.1021/acs.jctc.8b00002. Epub 2018 Jun 20.

Abstract

Many popular methods for the calculation of chemical potentials rely on the insertion of test particles into the target system. In the case of liquids and liquid mixtures, this procedure increases in difficulty upon increasing density or concentration, and the use of sophisticated enhanced sampling techniques becomes inevitable. In this work, we propose an alternative strategy, spatially resolved thermodynamic integration, or SPARTIAN for short. Here, molecules are described with atomistic resolution in a simulation subregion and as ideal gas particles in a larger reservoir. All molecules are free to diffuse between subdomains adapting their resolution on the fly. To enforce a uniform density profile across the simulation box, a single-molecule external potential is computed, applied, and identified with the difference in chemical potential between the two resolutions. Since the reservoir is represented as an ideal gas bath, this difference exactly amounts to the excess chemical potential of the target system. The present approach surpasses the high density/concentration limitation of particle insertion methods because the ideal gas molecules entering the target system region spontaneously adapt to the local environment. The ideal gas representation contributes negligibly to the computational cost of the simulation, thus allowing one to make use of large reservoirs at minimal expenses. The method has been validated by computing excess chemical potentials for pure Lennard-Jones liquids and mixtures, SPC and SPC/E liquid water, and aqueous solutions of sodium chloride. The reported results well reproduce literature data for these systems.

摘要

许多用于计算化学势的常用方法都依赖于将测试粒子插入目标系统中。在液体和液体混合物的情况下,随着密度或浓度的增加,此过程的难度会增加,并且必须使用复杂的增强采样技术。在这项工作中,我们提出了一种替代策略,即空间分辨热力学积分(SPARTIAN)。在这里,分子在模拟子域中以原子分辨率描述,而在更大的储库中则以理想气体粒子描述。所有分子都可以自由地在子域之间扩散,并根据需要即时调整其分辨率。为了在整个模拟盒中强制实现均匀的密度分布,可以计算、应用和识别单个分子的外部势,以确定两个分辨率之间的化学势差。由于储库被表示为理想气体浴,因此该差异恰好等于目标系统的超额化学势。由于理想气体分子进入目标系统区域时会自动适应局部环境,因此该方法克服了粒子插入方法的高密度/高浓度限制。理想气体表示对模拟的计算成本几乎没有贡献,因此可以以最小的代价利用大型储库。该方法已通过计算纯 Lennard-Jones 液体和混合物、SPC 和 SPC/E 液态水以及氯化钠水溶液的超额化学势得到验证。报告的结果很好地再现了这些系统的文献数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验