Suppr超能文献

在空间有序和无序相互作用的凝胶中,粒子的捕获机制是不同的。

Particle Trapping Mechanisms Are Different in Spatially Ordered and Disordered Interacting Gels.

机构信息

Department of Physics, Freie Universität Berlin, Berlin, Germany.

Department of Physics, Freie Universität Berlin, Berlin, Germany.

出版信息

Biophys J. 2018 Jun 5;114(11):2653-2664. doi: 10.1016/j.bpj.2018.04.041.

Abstract

Using stochastic simulations, we study the influence of spatial disorder on the diffusion of a single particle through a gel that consists of rigid, straight fibers. The interaction between the particle and the gel fibers consists of an invariant short-range repulsion, the steric part, and an interaction part that can be attractive or repulsive and of varying range. The effect that spatial disorder of the gel structure has on the particle diffusivity depends crucially on the presence of nonsteric interactions. For attractive interactions, disorder slows down diffusion, because in disordered gels, the particle becomes strongly trapped in regions of locally increased fiber density. For repulsive interactions, the diffusivity is minimal for intermediate disorder strength, because highly disordered lattices exhibit abundant passageways of locally low fiber density. The comparison with experimental data on protein and fluorophore diffusion through various hydrogels is favorable. Our findings shed light on particle-diffusion mechanisms in biogels and thus on biological barrier properties, which can be helpful for the optimal design of synthetic diffusors as well as synthetic mucus constructs.

摘要

我们利用随机模拟研究了空间无序对单个粒子通过由刚性直纤维组成的凝胶扩散的影响。粒子与凝胶纤维之间的相互作用包括不变的短程排斥力(即空间位阻部分)和具有不同范围的吸引力或排斥力的相互作用部分。凝胶结构的空间无序对粒子扩散率的影响取决于非空间位阻相互作用的存在。对于吸引力相互作用,无序会减缓扩散,因为在无序的凝胶中,粒子在局部纤维密度增加的区域中被强烈捕获。对于排斥相互作用,在中间无序强度下,扩散率最小,因为高度无序的晶格具有丰富的局部低纤维密度的通道。与各种水凝胶中蛋白质和荧光染料扩散的实验数据的比较是有利的。我们的发现揭示了生物凝胶中粒子扩散机制,从而揭示了生物屏障特性,这对于合成扩散器以及合成黏液结构的最佳设计是有帮助的。

相似文献

1
Particle Trapping Mechanisms Are Different in Spatially Ordered and Disordered Interacting Gels.
Biophys J. 2018 Jun 5;114(11):2653-2664. doi: 10.1016/j.bpj.2018.04.041.
2
Particle Diffusion in Polymeric Hydrogels with Mixed Attractive and Repulsive Interactions.
Nano Lett. 2018 Aug 8;18(8):5248-5256. doi: 10.1021/acs.nanolett.8b02218. Epub 2018 Jul 5.
3
Nanoparticle filtering in charged hydrogels: Effects of particle size, charge asymmetry and salt concentration.
Eur Phys J E Soft Matter. 2016 May;39(5):53. doi: 10.1140/epje/i2016-16053-2. Epub 2016 May 12.
4
Order-disorder transitions in a sheared many-body system.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Dec;92(6):062208. doi: 10.1103/PhysRevE.92.062208. Epub 2015 Dec 28.
5
Electrophoresis of DNA on a disordered two-dimensional substrate.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Nov;74(5 Pt 1):051908. doi: 10.1103/PhysRevE.74.051908. Epub 2006 Nov 13.
6
Particle diffusion in globular protein gels in relation to the gel structure.
Biomacromolecules. 2011 Feb 14;12(2):450-6. doi: 10.1021/bm101238r. Epub 2010 Dec 29.
7
Diffusion anisotropy in collagen gels and tumors: the effect of fiber network orientation.
Biophys J. 2010 Nov 17;99(10):3119-28. doi: 10.1016/j.bpj.2010.08.065.
8
Size effects on diffusion processes within agarose gels.
Biophys J. 2004 May;86(5):2710-9. doi: 10.1016/S0006-3495(04)74325-8.
9
Solute diffusion in gels: Thirty years of simulations.
Adv Colloid Interface Sci. 2021 Jan;287:102320. doi: 10.1016/j.cis.2020.102320. Epub 2020 Nov 20.
10
The nuclear pore complex mystery and anomalous diffusion in reversible gels.
Biophys J. 2002 Dec;83(6):3079-87. doi: 10.1016/s0006-3495(02)75312-5.

引用本文的文献

1
Directional change during active diffusion of viral ribonucleoprotein particles through cytoplasm.
Biophys J. 2024 Sep 3;123(17):2869-2876. doi: 10.1016/j.bpj.2024.04.025. Epub 2024 Apr 25.
2
Computational fluid dynamics modeling of aerosol particle transport through lung airway mucosa.
Comput Chem Eng. 2023 Nov;179. doi: 10.1016/j.compchemeng.2023.108458. Epub 2023 Oct 16.
3
Particle Diffusivity and Free-Energy Profiles in Hydrogels from Time-Resolved Penetration Data.
Biophys J. 2021 Feb 2;120(3):463-475. doi: 10.1016/j.bpj.2020.12.020. Epub 2021 Jan 7.
4
Protein diffusion from microwells with contrasting hydrogel domains.
APL Bioeng. 2019 Apr 19;3(2):026101. doi: 10.1063/1.5078650. eCollection 2019 Jun.
5
Heterogeneity of Network Structures and Water Dynamics in κ-Carrageenan Gels Probed by Nanoparticle Diffusometry.
Langmuir. 2018 Sep 18;34(37):11110-11120. doi: 10.1021/acs.langmuir.8b01052. Epub 2018 Sep 6.

本文引用的文献

1
Tracer diffusion in a polymer gel: simulations of static and dynamic 3D networks using spherical boundary conditions.
J Phys Condens Matter. 2016 Nov 30;28(47):475101. doi: 10.1088/0953-8984/28/47/475101. Epub 2016 Sep 23.
2
Nanoparticle filtering in charged hydrogels: Effects of particle size, charge asymmetry and salt concentration.
Eur Phys J E Soft Matter. 2016 May;39(5):53. doi: 10.1140/epje/i2016-16053-2. Epub 2016 May 12.
3
Diffusion Regulation in the Vitreous Humor.
Biophys J. 2015 Nov 17;109(10):2171-81. doi: 10.1016/j.bpj.2015.10.002.
5
Particle transport through hydrogels is charge asymmetric.
Biophys J. 2015 Feb 3;108(3):530-9. doi: 10.1016/j.bpj.2014.12.009.
6
Non-universal tracer diffusion in crowded media of non-inert obstacles.
Phys Chem Chem Phys. 2015 Jan 21;17(3):1847-58. doi: 10.1039/c4cp03599b. Epub 2014 Dec 4.
7
Single particle tracking reveals spatial and dynamic organization of the biofilm matrix.
New J Phys. 2014 Aug 27;16(8):085014. doi: 10.1088/1367-2630/16/8/085014.
8
Ion-specific effects modulate the diffusive mobility of colloids in an extracellular matrix gel.
Langmuir. 2013 Dec 23;29(51):15965-73. doi: 10.1021/la404016y. Epub 2013 Dec 12.
9
Spatial configuration and composition of charge modulates transport into a mucin hydrogel barrier.
Biophys J. 2013 Sep 17;105(6):1357-65. doi: 10.1016/j.bpj.2013.07.050.
10
Development and in vitro evaluation of slippery nanoparticles for enhanced diffusion through native mucus.
Nanomedicine (Lond). 2014 Mar;9(3):387-96. doi: 10.2217/nnm.13.26. Epub 2013 Apr 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验