Suppr超能文献

胶原凝胶和肿瘤中的各向异性扩散:纤维网络取向的影响。

Diffusion anisotropy in collagen gels and tumors: the effect of fiber network orientation.

机构信息

Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA.

出版信息

Biophys J. 2010 Nov 17;99(10):3119-28. doi: 10.1016/j.bpj.2010.08.065.

Abstract

The interstitial matrix is comprised of cross-linked collagen fibers, generally arranged in nonisotropic orientations. Spatial alignment of matrix components within the tissue can affect diffusion patterns of drugs. In this study, we developed a methodology for the calculation of diffusion coefficients of macromolecules and nanoparticles in collagenous tissues. The tissues are modeled as three-dimensional, stochastic, fiber networks with varying degrees of alignment. We employed a random walk approach to simulate diffusion and a Stokesian dynamics method to account for hydrodynamic hindrance. We performed our analysis for four different structures ranging from nearly isotropic to perfectly aligned. We showed that the overall diffusion coefficient is not affected by the orientation of the network. However, structural anisotropy results in diffusion anisotropy, which becomes more significant with increase in the degree of alignment, the size of the diffusing particle, and the fiber volume fraction. To test our model predictions we performed diffusion measurements in reconstituted collagen gels and tumor xenografts. We measured fiber alignment and diffusion with second harmonic generation and multiphoton fluorescent recovery after photobleaching techniques, respectively. The results showed for the first time in tumors that the structure and orientation of collagen fibers in the extracellular space leads to diffusion anisotropy.

摘要

细胞间质由交联的胶原纤维组成,通常呈各向异性排列。组织中基质成分的空间排列会影响药物的扩散模式。在这项研究中,我们开发了一种计算胶原组织中大分子和纳米颗粒扩散系数的方法。这些组织被建模为具有不同取向程度的三维随机纤维网络。我们采用随机游走方法模拟扩散,采用 Stokesian 动力学方法考虑流体力学阻力。我们对四种不同的结构进行了分析,范围从近乎各向同性到完全取向。结果表明,整体扩散系数不受网络取向的影响。然而,结构各向异性导致扩散各向异性,随着取向程度、扩散粒子的大小和纤维体积分数的增加,这种各向异性变得更加显著。为了验证我们的模型预测,我们在重组胶原凝胶和肿瘤异种移植物中进行了扩散测量。我们分别采用二次谐波产生和多光子荧光漂白后恢复技术测量纤维取向和扩散。结果首次表明,肿瘤细胞外空间中胶原纤维的结构和取向导致了扩散各向异性。

相似文献

1
Diffusion anisotropy in collagen gels and tumors: the effect of fiber network orientation.
Biophys J. 2010 Nov 17;99(10):3119-28. doi: 10.1016/j.bpj.2010.08.065.
3
Physical and chemical modifications of collagen gels: impact on diffusion.
Biopolymers. 2008 Feb;89(2):135-43. doi: 10.1002/bip.20874.
4
Diffusional anisotropy in collagenous tissues: fluorescence imaging of continuous point photobleaching.
Biophys J. 2006 Jul 1;91(1):311-6. doi: 10.1529/biophysj.105.075283. Epub 2006 Apr 7.
5
Langevin dynamics modeling of the water diffusion tensor in partially aligned collagen networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Sep;86(3 Pt 1):031917. doi: 10.1103/PhysRevE.86.031917. Epub 2012 Sep 17.
6
Diffusion and convection in collagen gels: implications for transport in the tumor interstitium.
Biophys J. 2002 Sep;83(3):1650-60. doi: 10.1016/S0006-3495(02)73933-7.
8
Optimizing detection of tissue anisotropy by fluorescence recovery after photobleaching.
Bull Math Biol. 2006 Nov;68(8):1873-91. doi: 10.1007/s11538-006-9074-z. Epub 2006 Jul 20.
9
Rapid Quantification of 3D Collagen Fiber Alignment and Fiber Intersection Correlations with High Sensitivity.
PLoS One. 2015 Jul 9;10(7):e0131814. doi: 10.1371/journal.pone.0131814. eCollection 2015.
10
Micro-tensile rheology of fibrous gels quantifies strain-dependent anisotropy.
Acta Biomater. 2024 Jun;181:272-281. doi: 10.1016/j.actbio.2024.03.028. Epub 2024 Apr 28.

引用本文的文献

1
Impact of Polymer Degradation on Cellular Behavior in Tissue Engineering.
Bioprinting. 2025 Oct;50. doi: 10.1016/j.bprint.2025.e00429. Epub 2025 Jul 30.
4
The Multifaced Role of Collagen in Cancer Development and Progression.
Int J Mol Sci. 2024 Dec 17;25(24):13523. doi: 10.3390/ijms252413523.
6
Modeling collagen fibril degradation as a function of matrix microarchitecture.
Soft Matter. 2024 Nov 27;20(46):9286-9300. doi: 10.1039/d4sm00971a.
7
Mind the gap: Exploring extracellular spaces in the brain with particle tracking and AI.
Biophys J. 2024 Nov 19;123(22):3857-3858. doi: 10.1016/j.bpj.2024.09.023. Epub 2024 Sep 26.
8
Modeling collagen fibril degradation as a function of matrix microarchitecture.
bioRxiv. 2024 Aug 12:2024.08.10.607470. doi: 10.1101/2024.08.10.607470.
10
Anomalous diffusion of nanoparticles in the spatially heterogeneous biofilm environment.
iScience. 2023 May 13;26(6):106861. doi: 10.1016/j.isci.2023.106861. eCollection 2023 Jun 16.

本文引用的文献

1
Delivering nanomedicine to solid tumors.
Nat Rev Clin Oncol. 2010 Nov;7(11):653-64. doi: 10.1038/nrclinonc.2010.139. Epub 2010 Sep 14.
3
Computational predictions of the tensile properties of electrospun fibre meshes: effect of fibre diameter and fibre orientation.
J Mech Behav Biomed Mater. 2008 Oct;1(4):326-35. doi: 10.1016/j.jmbbm.2008.01.003. Epub 2008 Jan 25.
4
Multiscale measurements distinguish cellular and interstitial hindrances to diffusion in vivo.
Biophys J. 2009 Jul 8;97(1):330-6. doi: 10.1016/j.bpj.2009.03.064.
5
Permeability calculations in three-dimensional isotropic and oriented fiber networks.
Phys Fluids (1994). 2008 Dec;20(12):123601. doi: 10.1063/1.3021477. Epub 2008 Dec 8.
8
Matrix metalloproteinases-1 and -8 improve the distribution and efficacy of an oncolytic virus.
Cancer Res. 2007 Nov 15;67(22):10664-8. doi: 10.1158/0008-5472.CAN-07-3107.
9
Physical and chemical modifications of collagen gels: impact on diffusion.
Biopolymers. 2008 Feb;89(2):135-43. doi: 10.1002/bip.20874.
10
Multiscale, structure-based modeling for the elastic mechanical behavior of arterial walls.
J Biomech Eng. 2007 Aug;129(4):611-8. doi: 10.1115/1.2746387.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验