Torricelli Federica, Nicoli Davide, Bellazzi Riccardo, Ciarrocchi Alessia, Farnetti Enrico, Mastrofilippo Valentina, Zamponi Raffaella, La Sala Giovanni Battista, Casali Bruno, Mandato Vincenzo Dario
Laboratory of Translational Research, Azienda USL Reggio Emilia-IRCCS, Reggio Emilia, Italy.
Laboratory of Molecular Biology, Azienda USL Reggio Emilia-IRCCS, Reggio Emilia, Italy.
Oncotarget. 2018 May 22;9(39):25517-25528. doi: 10.18632/oncotarget.25354.
Histological classification and staging are the gold standard for the prognosis of endometrial cancer (EC). However, in morphologically intermediate and doubtful cases this approach results largely insufficient, defining the need for better classification criteria. In this work we developed an algorithm that based on EC genetic alterations and in combination with the current histological classification, improves EC patients prognostic stratification, in particular in doubtful cases. A panel of 26 cancer related genes was analyzed in 89 EC patients and somatic functional mutations were investigated in association with different histology and outcome. An unsupervised hierarchical clustering analysis revealed that two groups of patients with different tumor grade and different prognosis can be distinguished by mutational profile. In particular, the mutational status of APC, CTNNB1, PIK3CA, PTEN, SMAD4 and TP53 resulted to be principal drivers of prognostic clustering. Consistently, a decisional tree generated by a data mining approach summarizes the consequential molecular criteria for patients prognostic stratification. The model proposed by this work provides the clinician with a tool able to support the prognosis of EC patients and consequently drives the choice of the most appropriated therapeutic strategy and follow up.
组织学分类和分期是子宫内膜癌(EC)预后评估的金标准。然而,在形态学表现处于中间状态以及存在疑问的病例中,这种方法在很大程度上是不足的,这就明确了需要更好的分类标准。在这项研究中,我们开发了一种算法,该算法基于EC的基因改变,并结合当前的组织学分类,改善了EC患者的预后分层,尤其是在疑难病例中。我们对89例EC患者的26个癌症相关基因进行了分析,并研究了体细胞功能突变与不同组织学类型和预后的关系。无监督层次聚类分析显示,通过突变谱可以区分出两组具有不同肿瘤分级和不同预后的患者。特别是,APC、CTNNB1、PIK3CA、PTEN、SMAD4和TP53的突变状态是预后聚类的主要驱动因素。同样,通过数据挖掘方法生成的决策树总结了患者预后分层的相应分子标准。这项研究提出的模型为临床医生提供了一种工具,能够辅助评估EC患者的预后,从而指导选择最合适的治疗策略和随访方案。