State Key Laboratory of Automotive Simulation and Control, Department of Materials Science, Jilin University, Changchun 130012, China.
Phys Chem Chem Phys. 2018 Jul 11;20(27):18184-18191. doi: 10.1039/c8cp01294f.
With the approaching commercialization of proton exchange membrane fuel cell technology, developing active, non-precious metal oxygen reduction reaction (ORR) catalyst materials to replace currently used Pt-based catalysts is a necessary and essential requirement in order to reduce the overall system cost. Here, we report a single-atom doped molybdenum disulfide sheet (short as X-MoS2) catalyst for the ORR using a dispersion-corrected density functional theory method. Of all the eleven X-MoS2 (X = B, C, N, O; Al, Si, P; Ga, Ge, As, and Se) systems, only the phosphorus atom doped molybdenum disulfide (P-MoS2) has an O2 adsorption energy close to that of a Pt(111) surface. We have further explored the detailed ORR mechanism of P-MoS2. Along the four-electron reaction pathway, the reduction of OH to H2O is the rate-limiting step with the largest diffusion barrier of 0.79 eV.
随着质子交换膜燃料电池技术的商业化临近,开发活性、非贵金属氧还原反应(ORR)催化剂材料来替代目前使用的 Pt 基催化剂是降低整个系统成本的必要和重要要求。在这里,我们使用经过分散修正的密度泛函理论方法报告了一种用于 ORR 的单原子掺杂二硫化钼片(简称 X-MoS2)催化剂。在所有 11 个 X-MoS2(X = B、C、N、O;Al、Si、P;Ga、Ge、As 和 Se)体系中,只有磷原子掺杂的二硫化钼(P-MoS2)具有接近 Pt(111)表面的 O2 吸附能。我们进一步探索了 P-MoS2 的详细 ORR 机制。沿四电子反应途径,OH 还原为 H2O 是速率限制步骤,具有最大的扩散势垒 0.79 eV。