Suppr超能文献

基于第一性原理计算研究无机分子(O、NO)在氮磷共掺杂MoS单层上的吸附

Inorganic molecule (O, NO) adsorption on nitrogen- and phosphorus-doped MoS monolayer using first principle calculations.

作者信息

Abbas Hafiz Ghulam, Debela Tekalign Terfa, Hussain Sajjad, Hussain Iftikhar

机构信息

Department of Nanoscience and Nanotechnology, Research Institute of Physics and Chemistry, Chonbuk National University Chonbuk 561-756 Jeonju Republic of Korea.

Institute for Application of Advanced Material, Jeonju University Chonju Chonbuk 55069 Republic of Korea.

出版信息

RSC Adv. 2018 Nov 16;8(67):38656-38666. doi: 10.1039/c8ra07638c. eCollection 2018 Nov 14.

Abstract

We performed a systematic study of the adsorption behaviors of O and NO gas molecules on pristine MoS, N-doped, and P-doped MoS monolayers first principle calculations. Our adsorption energy calculations and charge analysis showed that the interactions between the NO and O molecules and P-MoS system are stronger than that of pristine and N-MoS. The spin of the absorbed molecule couples differently depending on the type of gas molecule adsorbed on the P- and N-substituted MoS monolayer. Meanwhile, the adsorption of O molecules leaves N- and P-MoS a magnetic semiconductor, whereas the adsorption of an NO molecule turns this system into a nonmagnetic semiconductor, which may provide some helpful information for designing new N- and P-substituted MoS-based nanoelectronic devices. Therefore, P- and N-MoS can be used to distinguish O and NO gases using magnetic properties, and P-MoS-based gas sensors are predicted to be more sensitive to detect NO molecules rather than pristine and N-MoS systems.

摘要

我们通过第一性原理计算对O和NO气体分子在原始MoS、N掺杂和P掺杂的MoS单层上的吸附行为进行了系统研究。我们的吸附能计算和电荷分析表明,NO和O分子与P-MoS体系之间的相互作用比原始MoS和N-MoS更强。根据吸附在P和N取代的MoS单层上的气体分子类型,被吸收分子的自旋耦合方式不同。同时,O分子的吸附使N-MoS和P-MoS成为磁性半导体,而NO分子的吸附则使该体系变成非磁性半导体,这可能为设计新型N和P取代的基于MoS的纳米电子器件提供一些有用信息。因此,P-MoS和N-MoS可用于利用磁性特性区分O和NO气体,并且预计基于P-MoS的气体传感器对检测NO分子比原始MoS和N-MoS体系更敏感。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90f4/9090664/3d03ee912129/c8ra07638c-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验