Suppr超能文献

从鉴定到功能:对全基因组关联研究结果进行优先级排序和跟进的当前策略

From Identification to Function: Current Strategies to Prioritise and Follow-Up GWAS Results.

作者信息

Berlanga-Taylor Antonio J

机构信息

MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, UK.

出版信息

Methods Mol Biol. 2018;1793:259-275. doi: 10.1007/978-1-4939-7868-7_15.

Abstract

Along with family-based studies, dozens of genome-wide association studies (GWAS) have clearly identified the genetic basis of common diseases and complex traits. There are currently hundreds of single nucleotide polymorphisms (SNP) associated with human disease as well as biochemical and physiological phenotypes. Although this is only the tip of the iceberg, we are now confronted with a general lack of understanding of how these trait-associated variants act. How do these genetic changes lead to overt clinical phenotypes? What are the molecular mechanisms? Can we harness this information to develop better preventive and curative strategies? Current efforts are shifting to focus on these questions as we move from identifying variants to understanding their effects. Here I provide a broad overview of the main technical concerns and current bottlenecks as we approach this new phase.

摘要

除了基于家系的研究外,数十项全基因组关联研究(GWAS)已经明确确定了常见疾病和复杂性状的遗传基础。目前有数百个与人类疾病以及生化和生理表型相关的单核苷酸多态性(SNP)。尽管这只是冰山一角,但我们目前普遍缺乏对这些与性状相关的变异如何起作用的理解。这些基因变化是如何导致明显的临床表型的?分子机制是什么?我们能否利用这些信息制定更好的预防和治疗策略?随着我们从识别变异转向了解其影响,当前的工作重点正转向关注这些问题。在此,我将对进入这一新阶段时的主要技术问题和当前瓶颈进行广泛概述。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验