文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

植物全基因组关联研究中优先考虑的候选因果单倍型块。

Prioritized candidate causal haplotype blocks in plant genome-wide association studies.

机构信息

Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America.

Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, Connecticut, United States of America.

出版信息

PLoS Genet. 2022 Oct 17;18(10):e1010437. doi: 10.1371/journal.pgen.1010437. eCollection 2022 Oct.


DOI:10.1371/journal.pgen.1010437
PMID:36251695
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9612827/
Abstract

Genome wide association studies (GWAS) can play an essential role in understanding genetic basis of complex traits in plants and animals. Conventional SNP-based linear mixed models (LMM) that marginally test single nucleotide polymorphisms (SNPs) have successfully identified many loci with major and minor effects in many GWAS. In plant, the relatively small population size in GWAS and the high genetic diversity found in many plant species can impede mapping efforts on complex traits. Here we present a novel haplotype-based trait fine-mapping framework, HapFM, to supplement current GWAS methods. HapFM uses genotype data to partition the genome into haplotype blocks, identifies haplotype clusters within each block, and then performs genome-wide haplotype fine-mapping to prioritize the candidate causal haplotype blocks of trait. We benchmarked HapFM, GEMMA, BSLMM, GMMAT, and BLINK in both simulated and real plant GWAS datasets. HapFM consistently resulted in higher mapping power than the other GWAS methods in high polygenicity simulation setting. Moreover, it resulted in smaller mapping intervals, especially in regions of high LD, achieved by prioritizing small candidate causal blocks in the larger haplotype blocks. In the Arabidopsis flowering time (FT10) datasets, HapFM identified four novel loci compared to GEMMA's results, and the average mapping interval of HapFM was 9.6 times smaller than that of GEMMA. In conclusion, HapFM is tailored for plant GWAS to result in high mapping power on complex traits and improved on mapping resolution to facilitate crop improvement.

摘要

全基因组关联研究(GWAS)可以在理解动植物复杂性状的遗传基础方面发挥重要作用。传统的基于单核苷酸多态性(SNP)的线性混合模型(LMM),仅对单个核苷酸多态性(SNP)进行边际测试,已成功鉴定出许多在许多 GWAS 中具有主要和次要效应的基因座。在植物中,GWAS 中的相对较小的群体规模和许多植物物种中发现的高遗传多样性可能会阻碍对复杂性状的图谱绘制工作。在这里,我们提出了一种新的基于单倍型的性状精细映射框架 HapFM,以补充当前的 GWAS 方法。HapFM 使用基因型数据将基因组划分为单倍型块,在每个块内识别单倍型簇,然后进行全基因组单倍型精细映射,以优先考虑性状的候选因果单倍型块。我们在模拟和真实的植物 GWAS 数据集上对 HapFM、GEMMA、BSLMM、GMMAT 和 BLINK 进行了基准测试。在高多基因模拟设置中,HapFM 始终比其他 GWAS 方法具有更高的映射能力。此外,它通过在较大的单倍型块中优先考虑小的候选因果块,导致较小的映射间隔,尤其是在 LD 较高的区域。在拟南芥开花时间(FT10)数据集上,与 GEMMA 的结果相比,HapFM 鉴定出了四个新的基因座,并且 HapFM 的平均映射间隔比 GEMMA 的小 9.6 倍。总之,HapFM 是为植物 GWAS 量身定制的,可提高复杂性状的映射能力,并提高映射分辨率,以促进作物改良。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f8d/9612827/b3458c504742/pgen.1010437.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f8d/9612827/ca45c63be5ca/pgen.1010437.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f8d/9612827/e717928ac80c/pgen.1010437.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f8d/9612827/3dc78493c1b0/pgen.1010437.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f8d/9612827/996d962ea313/pgen.1010437.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f8d/9612827/4fbed9775969/pgen.1010437.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f8d/9612827/b3458c504742/pgen.1010437.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f8d/9612827/ca45c63be5ca/pgen.1010437.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f8d/9612827/e717928ac80c/pgen.1010437.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f8d/9612827/3dc78493c1b0/pgen.1010437.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f8d/9612827/996d962ea313/pgen.1010437.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f8d/9612827/4fbed9775969/pgen.1010437.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f8d/9612827/b3458c504742/pgen.1010437.g006.jpg

相似文献

[1]
Prioritized candidate causal haplotype blocks in plant genome-wide association studies.

PLoS Genet. 2022-10

[2]
Selecting Closely-Linked SNPs Based on Local Epistatic Effects for Haplotype Construction Improves Power of Association Mapping.

G3 (Bethesda). 2019-12-3

[3]
A genome-scale integrated approach aids in genetic dissection of complex flowering time trait in chickpea.

Plant Mol Biol. 2015-9-22

[4]
SNP- and haplotype-based genome-wide association studies for growth, carcass, and meat quality traits in a Duroc multigenerational population.

BMC Genet. 2016-4-19

[5]
A Genome-Wide Association Study for Agronomic Traits in Soybean Using SNP Markers and SNP-Based Haplotype Analysis.

PLoS One. 2017-2-2

[6]
Genome-wide association of single nucleotide polymorphism loci and candidate genes for frogeye leaf spot (Cercospora sojina) resistance in soybean.

BMC Plant Biol. 2021-12-11

[7]
DNA polymorphisms and haplotype patterns of transcription factors involved in barley endosperm development are associated with key agronomic traits.

BMC Plant Biol. 2010-1-8

[8]
Genome-wide association study of inflorescence length of cultivated soybean based on the high-throughout single-nucleotide markers.

Mol Genet Genomics. 2019-2-9

[9]
Linkage Disequilibrium and Evaluation of Genome-Wide Association Mapping Models in Tetraploid Potato.

G3 (Bethesda). 2018-10-3

[10]
Genome-Wide Association Study of Root System Development at Seedling Stage in Rice.

Genes (Basel). 2020-11-25

引用本文的文献

[1]
Rapid adaptation and extinction across climates in synchronized outdoor evolution experiments of .

bioRxiv. 2025-5-28

[2]
Genome-specific association study (GSAS) for exploration of variability in hemp (Cannabis sativa).

Sci Rep. 2025-3-11

[3]
Plant sperm cell sequencing for genome phasing and determination of meiotic crossover points.

Nat Protoc. 2025-3

[4]
crosshap: R package for local haplotype visualization for trait association analysis.

Bioinformatics. 2023-8-1

本文引用的文献

[1]
Plant Pan-Genomics Comes of Age.

Annu Rev Plant Biol. 2021-6-17

[2]
Status and prospects of genome-wide association studies in plants.

Plant Genome. 2021-3

[3]
A New Catalog of Structural Variants in 1,301 A. thaliana Lines from Africa, Eurasia, and North America Reveals a Signature of Balancing Selection at Defense Response Genes.

Mol Biol Evol. 2021-4-13

[4]
Large-scale genome-wide association study, using historical data, identifies conserved genetic architecture of cyanogenic glucoside content in cassava (Manihot esculenta Crantz) root.

Plant J. 2021-2

[5]
Pan-Genome of Wild and Cultivated Soybeans.

Cell. 2020-7-9

[6]
Major Impacts of Widespread Structural Variation on Gene Expression and Crop Improvement in Tomato.

Cell. 2020-7-9

[7]
From GWAS to Function: Using Functional Genomics to Identify the Mechanisms Underlying Complex Diseases.

Front Genet. 2020-5-13

[8]
Comparing Different Statistical Models and Multiple Testing Corrections for Association Mapping in Soybean and Maize.

Front Plant Sci. 2020-2-25

[9]
RAINBOW: Haplotype-based genome-wide association study using a novel SNP-set method.

PLoS Comput Biol. 2020-2-14

[10]
Fine mapping and gene cloning in the post-NGS era: advances and prospects.

Theor Appl Genet. 2020-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索