Suppr超能文献

数以百计的新型复合基因和源自细菌的嵌合基因促进了盐杆菌的进化。

Hundreds of novel composite genes and chimeric genes with bacterial origins contributed to haloarchaeal evolution.

机构信息

Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris Seine, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7138 Evolution Paris Seine, 75005, Paris, France.

Département de sciences biologiques, Université de Montréal, Montréal, Québec, Canada.

出版信息

Genome Biol. 2018 Jun 7;19(1):75. doi: 10.1186/s13059-018-1454-9.

Abstract

BACKGROUND

Haloarchaea, a major group of archaea, are able to metabolize sugars and to live in oxygenated salty environments. Their physiology and lifestyle strongly contrast with that of their archaeal ancestors. Amino acid optimizations, which lowered the isoelectric point of haloarchaeal proteins, and abundant lateral gene transfers from bacteria have been invoked to explain this deep evolutionary transition. We use network analyses to show that the evolution of novel genes exclusive to Haloarchaea also contributed to the evolution of this group.

RESULTS

We report the creation of 320 novel composite genes, both early in the evolution of Haloarchaea during haloarchaeal genesis and later in diverged haloarchaeal groups. One hundred and twenty-six of these novel composite genes derived from genetic material from bacterial genomes. These latter genes, largely involved in metabolic functions but also in oxygenic lifestyle, constitute a different gene pool from the laterally acquired bacterial genes formerly identified. These novel composite genes were likely advantageous for their hosts, since they show significant residence times in haloarchaeal genomes-consistent with a long phylogenetic history involving vertical descent and lateral gene transfer-and encode proteins with optimized isoelectric points.

CONCLUSIONS

Overall, our work encourages a systematic search for composite genes across all archaeal major groups, in order to better understand the origins of novel prokaryotic genes, and in order to test to what extent archaea might have adjusted their lifestyles by incorporating and recycling laterally acquired bacterial genetic fragments into new archaeal genes.

摘要

背景

盐杆菌是古菌的一个主要分支,能够代谢糖类并在富氧咸水环境中生存。它们的生理机能和生活方式与祖先有很大的不同。人们提出了氨基酸优化和大量来自细菌的侧向基因转移来解释这种深层进化转变。我们使用网络分析表明,专属于盐杆菌的新基因的进化也促进了该群体的进化。

结果

我们报告了 320 个新复合基因的创建,这些基因既存在于盐杆菌起源时的早期,也存在于分化后的盐杆菌群体中。其中 126 个新复合基因来自细菌基因组的遗传物质。这些基因主要涉及代谢功能,但也与好氧生活方式有关,它们构成了不同于以前确定的侧向获得的细菌基因的不同基因库。这些新的复合基因可能对它们的宿主有利,因为它们在盐杆菌基因组中的停留时间很长——与涉及垂直下降和侧向基因转移的长系统发育历史一致——并编码具有优化等电点的蛋白质。

结论

总的来说,我们的工作鼓励在所有古菌主要分支中系统地搜索复合基因,以便更好地了解新原核基因的起源,并测试古菌在多大程度上通过将侧向获得的细菌遗传片段纳入新的古菌基因来调整其生活方式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a658/5992828/fa4a0d0ef385/13059_2018_1454_Fig1_HTML.jpg

相似文献

2
Origins of major archaeal clades correspond to gene acquisitions from bacteria.
Nature. 2015 Jan 1;517(7532):77-80. doi: 10.1038/nature13805. Epub 2014 Oct 15.
3
Metabolic bacterial genes and the construction of high-level composite lineages of life.
Trends Ecol Evol. 2015 Mar;30(3):127-9. doi: 10.1016/j.tree.2015.01.001. Epub 2015 Jan 16.
4
Genomes in flux: the evolution of archaeal and proteobacterial gene content.
Genome Res. 2002 Jan;12(1):17-25. doi: 10.1101/gr.176501.
5
Acquisition of 1,000 eubacterial genes physiologically transformed a methanogen at the origin of Haloarchaea.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20537-42. doi: 10.1073/pnas.1209119109. Epub 2012 Nov 26.
6
Horizontal gene transfer in bacterial and archaeal complete genomes.
Genome Res. 2000 Nov;10(11):1719-25. doi: 10.1101/gr.130000.
8
The balance of driving forces during genome evolution in prokaryotes.
Genome Res. 2003 Jul;13(7):1589-94. doi: 10.1101/gr.1092603.
9
A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis.
Nucleic Acids Res. 2002 Jan 15;30(2):482-96. doi: 10.1093/nar/30.2.482.
10
Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes.
BMC Genomics. 2012 May 3;13:162. doi: 10.1186/1471-2164-13-162.

引用本文的文献

1
Unlocking the Potential of Metagenomics with the PacBio High-Fidelity Sequencing Technology.
Microorganisms. 2024 Dec 2;12(12):2482. doi: 10.3390/microorganisms12122482.
2
Dynamic evolution of the mTHF gene family associated with primary metabolism across life.
BMC Genomics. 2024 May 1;25(1):432. doi: 10.1186/s12864-024-10159-8.
6
Noncanonical prokaryotic X family DNA polymerases lack polymerase activity and act as exonucleases.
Nucleic Acids Res. 2022 Jun 24;50(11):6398-6413. doi: 10.1093/nar/gkac461.
7
Hundreds of Out-of-Frame Remodeled Gene Families in the Escherichia coli Pangenome.
Mol Biol Evol. 2022 Jan 7;39(1). doi: 10.1093/molbev/msab329.
9
Functional and Molecular Characterization of the sp. IBSBa Inulosucrase.
Microorganisms. 2021 Apr 2;9(4):749. doi: 10.3390/microorganisms9040749.
10
IPC 2.0: prediction of isoelectric point and pKa dissociation constants.
Nucleic Acids Res. 2021 Jul 2;49(W1):W285-W292. doi: 10.1093/nar/gkab295.

本文引用的文献

1
Failure to Recover Major Events of Gene Flux in Real Biological Data Due to Method Misapplication.
Genome Biol Evol. 2018 Apr 1;10(5):1198-1209. doi: 10.1093/gbe/evy080.
2
Formation of chimeric genes with essential functions at the origin of eukaryotes.
BMC Biol. 2018 Mar 13;16(1):30. doi: 10.1186/s12915-018-0500-0.
3
Emerging and evolving concepts in gene essentiality.
Nat Rev Genet. 2018 Jan;19(1):34-49. doi: 10.1038/nrg.2017.74. Epub 2017 Oct 16.
4
Effects of salinity on the cellular physiological responses of Natrinema sp. J7-2.
PLoS One. 2017 Sep 19;12(9):e0184974. doi: 10.1371/journal.pone.0184974. eCollection 2017.
5
Integrative modeling of gene and genome evolution roots the archaeal tree of life.
Proc Natl Acad Sci U S A. 2017 Jun 6;114(23):E4602-E4611. doi: 10.1073/pnas.1618463114. Epub 2017 May 22.
6
Global transcriptome analysis of Halolamina sp. to decipher the salt tolerance in extremely halophilic archaea.
Gene. 2017 Feb 15;601:56-64. doi: 10.1016/j.gene.2016.11.042. Epub 2016 Dec 2.
7
IPC - Isoelectric Point Calculator.
Biol Direct. 2016 Oct 21;11(1):55. doi: 10.1186/s13062-016-0159-9.
8
Open questions in the study of de novo genes: what, how and why.
Nat Rev Genet. 2016 Sep;17(9):567-78. doi: 10.1038/nrg.2016.78. Epub 2016 Jul 25.
9
The Genomic Basis of Evolutionary Innovation in Pseudomonas aeruginosa.
PLoS Genet. 2016 May 5;12(5):e1006005. doi: 10.1371/journal.pgen.1006005. eCollection 2016 May.
10
Protein networks identify novel symbiogenetic genes resulting from plastid endosymbiosis.
Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):3579-84. doi: 10.1073/pnas.1517551113. Epub 2016 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验