Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris Seine, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7138 Evolution Paris Seine, 75005, Paris, France.
Département de sciences biologiques, Université de Montréal, Montréal, Québec, Canada.
Genome Biol. 2018 Jun 7;19(1):75. doi: 10.1186/s13059-018-1454-9.
Haloarchaea, a major group of archaea, are able to metabolize sugars and to live in oxygenated salty environments. Their physiology and lifestyle strongly contrast with that of their archaeal ancestors. Amino acid optimizations, which lowered the isoelectric point of haloarchaeal proteins, and abundant lateral gene transfers from bacteria have been invoked to explain this deep evolutionary transition. We use network analyses to show that the evolution of novel genes exclusive to Haloarchaea also contributed to the evolution of this group.
We report the creation of 320 novel composite genes, both early in the evolution of Haloarchaea during haloarchaeal genesis and later in diverged haloarchaeal groups. One hundred and twenty-six of these novel composite genes derived from genetic material from bacterial genomes. These latter genes, largely involved in metabolic functions but also in oxygenic lifestyle, constitute a different gene pool from the laterally acquired bacterial genes formerly identified. These novel composite genes were likely advantageous for their hosts, since they show significant residence times in haloarchaeal genomes-consistent with a long phylogenetic history involving vertical descent and lateral gene transfer-and encode proteins with optimized isoelectric points.
Overall, our work encourages a systematic search for composite genes across all archaeal major groups, in order to better understand the origins of novel prokaryotic genes, and in order to test to what extent archaea might have adjusted their lifestyles by incorporating and recycling laterally acquired bacterial genetic fragments into new archaeal genes.
盐杆菌是古菌的一个主要分支,能够代谢糖类并在富氧咸水环境中生存。它们的生理机能和生活方式与祖先有很大的不同。人们提出了氨基酸优化和大量来自细菌的侧向基因转移来解释这种深层进化转变。我们使用网络分析表明,专属于盐杆菌的新基因的进化也促进了该群体的进化。
我们报告了 320 个新复合基因的创建,这些基因既存在于盐杆菌起源时的早期,也存在于分化后的盐杆菌群体中。其中 126 个新复合基因来自细菌基因组的遗传物质。这些基因主要涉及代谢功能,但也与好氧生活方式有关,它们构成了不同于以前确定的侧向获得的细菌基因的不同基因库。这些新的复合基因可能对它们的宿主有利,因为它们在盐杆菌基因组中的停留时间很长——与涉及垂直下降和侧向基因转移的长系统发育历史一致——并编码具有优化等电点的蛋白质。
总的来说,我们的工作鼓励在所有古菌主要分支中系统地搜索复合基因,以便更好地了解新原核基因的起源,并测试古菌在多大程度上通过将侧向获得的细菌遗传片段纳入新的古菌基因来调整其生活方式。